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1 Markov Chain

In this section consider the discrete time stochastic process. Let S be the state space, e.g., S =
Z = {integers}, S = {0, 1, · · · , N} and S = {−N, · · · , 0, · · · , N}.

Definition We say that a stochastic process {Xn}, n ≥ 0 is a Markov chain with initial distribution
π (P (X0) = πi) and (one-step) transition matrix P if for each n and ik, 0 ≤ k ≤ n− 1

P (Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X0 = i0) = P (Xn+1 = j|Xn = i) = pij ≥

with ∑
j∈S

pij = 1, pij ≥ 0.

Thus, the distribution of Xn+1 depends only on the current state Xn and is independent of the
past.

Example
Xn+1 = f(Xn, wn), f : S ×R→ S,

where {wn} is independent identically distributed random variables and

P (f(x,w) = j|x = i) = pij .

The following theorem follows;

Theorem Let Pn = {pnij .

P (Xn+2 = j|Xn = i) =
∑
k∈S

pikpkj = (P 2)ij = p
(2)
ij

P (Xn = j) = (πPn)j =
∑

πip
(n)
i,j

and
p

(m+n)
ij =

∑
k∈S

p
(n)
ik p

(m)
kj (Chapman-Kolmogorov).

∗Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA

1



1.1 Classification of the States

In this action we analyze the asymptotic behavior of the Markov chain, e.g. including

Questions (1) The limits πj = limn→∞ p
(n)
ij exist are are independent of i.

(2) The limits (π1, π2, · · · ) form a probability distribution, that is, π ≥ 0 and
∑
πi = 1.

(3) The chain is ergotic, i.e., πi > 0.
(4) There is one and only one stationary probability distribution π such that π = πP (invariant).

Definition (1) Communicate: i→ j if p
(n)
ij > 0 for some n ≥ 0. i↔ j (communicate) if i→ j and

j → i.
(2) Communicating classes: i ↔ j defines an equivalent relation, i.e., i ↔ i (reflective), i ↔ j ⇔
j ↔ i (symmetric) and i ↔ j, j ↔ k ⇔ i ↔ k (transitive). Thus, the equivalent relation i ↔ j
defines equivalent classes of the states, i.e., the communicating classes. A communicating class is
closed if the probability of leaving the class is zero, namely that if i is in an equivalent class C but
j is not, then j is not accessible from i.
(3) Transient, Null and Positive recurrent: Let the random variable τi be the first return time to
state i (the ”hitting time”):

τii = min{n ≥ 1 : Xn = i|X0 = i}.

The number of visits Ni to state i is defined by Ni =
∑∞

n=0 I{Xn = i} and

E(Ni) =

∞∑
n=0

P (Xn = i|X0 = i) =

∞∑
n=0

p
(n)
ii ,

where I{F} is the indicator function of event F , i.e., I{F}(ω) = 1 if ω ∈ F and I{F}(ω) = 0

if ω /∈ F . If
∑∞

n=0 p
(n)
ii = ∞ state i is recurrent (return to the state infinitely may times). If∑∞

n=0 p
(n)
ii <∞ state i is transit (return to the state finitely may times).

Define the probability of the first time return

f
(n)
ii = E(τii = n) = P (Xn = i, Xk 6= i|X0 = i)

of state i. Let fi be the probability of ever returning to state i given that the chain started in state
i, i.e.

fi = P (τii <∞) =
∞∑
n=1

f
(n)
ii .

Then, Ni has the geometric distribution, i.e.,

P (Ni = n) = fn−1
i (1− fi)

and

E(Ni) =
1

1− fi
.

Thus, state i is recurrent if and only if fi = 1 and state i is transit if and only if fi < 1. The mean
recurrence time of a recurrent state i is the expected return time µi:

µi = E(τii) =

∞∑
n=1

nf
(n)
ii .
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State i is positive recurrent (or non-null persistent) if µi is finite; otherwise, state i is null recurrent
(or null persistent).

(4) Period: State i has period d = d(i) if (i) p
(n)
ii > 0 for values od n = dm, (ii) d is the largest

number satisfying (i), equivalently d is the greatest common divisor of the numbers n for which

p
(n)
ii > 0. Note that even though a state has period k, it may not be possible to reach the state in
k steps. For example, suppose it is possible to return to the state in {6, 8, 10, 12, . . . } time steps;
k would be 2, even though 2 does not appear in this list. If k = 1, then the state is said to be
aperiodic: returns to state i can occur at irregular times. Otherwise (k > 1), the state is said to
be periodic with period k.
(5) Asymptotic: Let a Markov chain is irrecusable and aperiodic. Then, if either state i is transient

and null recurrent p
(n)
ij → 0 as n∞ or if all state i is positive recurrent p

(n)
ij →

1
µj

as n→∞.

(6) Stationary Distribution: The vector π is called a stationary distribution (or invariant measure)
if its entries πj are non-negative and

∑
j∈S πj = 1 and if it satisfies

π = πP ⇔ πj =
∑
i∈S

πipij .

An irreducible chain has a stationary distribution if and only if all of its states are positive recurrent.
In that case, it is unique and is related to the expected return time:

πj =
1

µj
.

Further, if the chain is both irreducible and aperiodic, then for any i and j,

lim
n→∞

p
(n)
ij =

1

µj
.

Note that there is no assumption on the starting distribution; the chain converges to the stationary
distribution regardless of where it begins. Such π is called the equilibrium distribution of the chain.
If a chain has more than one closed communicating class, its stationary distributions will not be
unique (consider any closed communicating class Ci in the chain; each one will have its own unique
stationary distribution πi. Extending these distributions to the overall chain, setting all values to
zero outside the communication class, yields that the set of invariant measures of the original chain
is the set of all convex combinations of the πi’s). However, if a state j is aperiodic, then

lim
n→∞

p
(n)
jj =

1

µj

and for any other state i, let fij be the probability that the chain ever visits state j if it starts at i,

lim
n→∞

p
(n)
ij =

fij
µj
.

If a state i is periodic with period d(i) > 1 then the limit

lim
n→∞

p
(n)
ii

does not exist, although the limit

lim
n→∞

p
(dn+r)
ii
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does exist for every integer r.
Theorem 1 Let C be a communicating class. Then either all states in C are transient or all are
recurrent.

p
(n+r+m)
ii ≥ p(n)

ij p
(r)
jj p

(m)
ji .

Theorem 2 Every recurrent class is closed.
Proof: Let C be a class which is not closed. Then there exists i ∈ C, and j /∈ C and m with
P (Xm = j|X0 = i) > 0. Since we have

P ({Xm = j} ∩ {Xn = i for infinitely many n}|X0 = i) = 0

this implies that
P (Xn = i for infinitely many n|X0 = i)) < 1,

so i is not recurrent, and so neither is C.
Theorem 3 Every finite closed class is recurrent.
Proof: Suppose C is closed and finite and that {Xn} starts in C. Then for some i ∈ C we have

0 < P (Xn = i for infinitely many n) = P (Xn = i for some n)P (Xn = i for infinitely many n)

by the strong Markov property. This shows that i is not transient, so C is recurrent.

1.2 Stationary distribution

When the limits exist, let j denote the long run proportion of time that the chain spends in state j

(1) πj = lim
n→∞

1

n

n∑
m=1

I{Xm = j|X0 = i} for all initial states i.

Taking expected values if πj exists then it can be computed alternatively by (via the bounded
convergence theorem)

πj = lim
n→∞

1

n

n∑
m=0

P (Xm = j|X0 = i) =
1

n

n∑
m=0

p
(m)
ij for all initial states iquad(Cesaro sense),

or equivalently

(2) lim
n→∞

1

n

n∑
m=1

Pm =

 π
π
...

 =

 π0 π1 π2 · · ·
π0 π1 π2 · · ·

...

 .

Theorem 4 If {Xn} is a positive recurrent Markov chain, then a unique stationary distribution πj
exists and is given by πj = 1

E(τjj)
> 0 for all states j ∈ S. If the chain is null recurrent or transient

then the limits in (1) are all 0 and no stationary distribution exits.
Proof: First, we immediately obtain the transient case result since by definition, each fixed state
i is then only visited a finite number of times; hence the limit in (2) must be 0. Next, j is
recurrent. Assume that X0 = j. Let t0 = 0, t1 = τjj , t2 = min{k > t1 : Xk = j} and in general
tn+1 = min{k > tn : Xk = j}. These tn are the consecutive times at which the chain visits state
j. If we let Yn = tn − tn−1 (the interevent times) then we revisit state j for the n-th time at time
tn = Y1 + · · · + Yn. The idea here is to break up the evolution of the Markov chain into i.i.d.
cycles where a cycle begins every time the chain visits state j. Yn is the n-th cycle-length. By the
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Markov property, the chain starts over again and is independent of the past everytime it enters
state j (formally this follows by the Strong Markov Property). This means that the cycle lengths
Yn, n ≥ 1 form an i.i.d. sequence with common distribution the same as the first cycle length τjj .
In particular, E(Yn) = E(τjj) for all n ≥ 1. Now observe that the number of revisits to state j is
precisely n visits at time tn = Y1 + · · · + Yn, and thus the long-run proportion of visits to state j
per unit time can be computed as

πj = lim
m→∞

1

m

m∑
k=1

I{Xk = j} = lim
n→∞

n∑n
i=1 Yi

=
1

E(τjj)

where the last equality follows from the Strong Law of Large Numbers). Thus in the positive
recurrent case, πj > 0 for all j ∈ S, where as in the null recurrent case, πj = 0 for all j ∈
S. Finally, if X0 = i 6= j, then we can first wait until the chain enters state j (which it will
eventually, by recurrence), and then proceed with the above proof. Uniqueness follows by the
unique representation.
Theorem 5 Suppose {Xn} is an irreducible Markov chain with transition matrix P. Then {Xn} is
positive recurrent if and only if there exists a (non-negative, summing to 1) solution, π, to the set
of linear equations π = πP , in which case π is precisely the unique stationary distribution for the
Markov chain.
Proof: Assume the chain is irreducible and positive recurrent. Then we know from Theorem 5 that
π exists and is unique. On the one hand, if we multiply (on the right) each side of Equation (5) by
P , then we obtain

lim
1

n

n∑
m=1

Pm+1 = lim
n→∞

n∑
m=1

Pm + lim
n→∞

1

n
(Pn+1 − P ) =

 π
π
...

 ,

which implies π = πP .
Conversely, assume the chain is either transient or null recurrent. From Theorem 4, we know

that then the limits in (2) are identically 0, that is,

lim
n→∞

1

n

n∑
m=1

Pm = 0

But if π = πP then (by multiplying both right sides by P) π = πP 2 and more generally π =
πPm, m ≥ 1 and so

π( lim
n→∞

1

n

n∑
m=1

Pm) = lim
n→∞

1

n

n∑
m=1

πPm = 0,

which implies π = 0, contradicting that π is a probability distribution. Having ruled out the
transient and null recurrent cases, we conclude that the chain must be positive recurrent. For the
uniqueness, suppose π′ = π′P . Multiplying both sides of (2) (on the left) by π′, we conclude that

π′ = π′

 π
π
...

 = π′

 π0 π1 π2 · · ·
π0 π1 π2 · · ·

...

 .

Since
∑

j∈S π
′
j = 1, π′j = πj for all j ∈ S.
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1.3 Stopping Time

Let {Fn, n ≥ 0} be an increasing family of σ-algebras and {Xn, n ≥ 0} be a {Fn, n ≥ 0} adapted
stochastic process.
Definition A stopping time with respect to {Fn} is a random variable such that {τ = n} is Fn
measurable for all b ≥ 0.
If Fn is the σ-algebra generated by {X0, · · · , Xn}, the event {τ = n} is completely determined by
(at most) the total information known up to time n, {X0, · · · , Xn}.

For example the hitting time

τi = min{n ≥ 0 : Xn = i}

of state i and
τA = min{n ≥ 0 : Xn ∈ A}.

of closed set A are stopping times.
Wald’s equation: We now consider the very special case of stopping times when {Xn. n ≥ 1 is
an independent and identically distributed (i.i.d.) sequence with common mean E(X). We are
interested in the sum up to time:

∑τ
n=1Xn.

Theorem (Wald’s Equation) If τ > 0 is a stopping time with respect to an i.i.d. sequence {Xn, n ≥
1} and if E(τ) <∞ and E(|X|) <∞, then

E(
τ∑

n=1

Xn) = E(τ)E(X).

Proof: Since
τ∑

n=1

Xn =
∞∑
n+1

XnI{τ > n− 1}

and Xn and I{τ > n− 1} are independent, we have

E(
τ∑

n=1

Xn) = E(X)
∞∑
n=0

P ({τ > n}) = E(X)E(τ),

where the last equality is due to ”integrating the tail” method for computing expected values of
non-negative random variables.
Null recurrence of the simple symmetric random walk: Let Rn be the simple symmetric random
walk: Rn = ∆1 + · · · + ∆n with R0 = 0 where ∆n, n ≥ 1 is i.i.d. with P (∆ = ±1) = 0.5 and
E(∆) = 0. This MC is recurrent but null recurrent. In fact we show that Eτ11 =∞ By conditioning
on the first step i = 1,

E(τ11) = (1 + E(τ21))
1

2
+ (1 + E(τ01))

1

2
= 1 + 0.5E(τ21) + 0.5E(τ01)

Note that by definition, the chain at time Rτ = 1 for τ = τ01 and

1 = Rτ =

τ∑
n=1

∆n

But from Wald’s equation assuming E(τ) <∞, then we conclude that

1 = E(Rτ ) = E(∆)E(τ) = 0
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which yields the contradiction 1 = 0 and thus E(τ01) = E(τ11) =∞.
Theorem 6 Suppose i 6= j are both recurrent. If i and j communicate and if j is positive recurrent
(E(τjj) < ∞), then i is positive recurrent (E(τii) < ∞) and also E(τij < ∞. In particular, all
states in a recurrent communication class are either all together positive recurrent or all together
null recurrent.
Proof: Assume that E(τjj) < ∞ and that i and j communicate. Choose the smallest n ≥ 1 such

that p
(n)
ji > 0. With X0 = j, let A = {Xk 6= j; 1 ≤ k ≤ n, Xn = i} and P (A) > 0. Then

E(τjj) ≥ E(τjj |A)P (A) = (n+ E(τij)))P (A),

and hence E(τij) <∞ (for otherwise E(τjj) =∞, a contradiction). With X0 = j, let {Ym, m ≥ 1}
be i.i.d process as defined in the proof of Theorem 4. Thus the n-th revisit of the chain to state j
is at time tn = Y1 + · · ·+ Yn, and E(Y ) = E(τjj) <∞. Let

p = P (the chain visits state i before returning to state j|X0 = j),

then p ≥ P (A), where A is defined above. Every time the chain revisits state j, there is, independent
of the past, this probability p that the chain will visit state i before revisiting state j again. Letting
N denote the number of revisits the chain makes to state j until first visiting state i, we thus
see that N has a geometric distribution with ”success” probability p, and so E(N) < ∞. N is a
stopping time with respect to the process {Ym}, and

τji ≤
N∑
m=1

Ym

and so by Wald’s equation
E(τji) ≤ E(N)E(Y ) <∞.

Finally, E(τii) ≤ E(τij) + E(τji) <∞.
Strong Markov Chain property: If τ is a stopping time with respect to the Markov chain, then
in fact, we get what is called the Strong Markov Property: Given the state Xτ at time τ (the
present), the future Xτ+1, Xτ+2, · · · is independent of the past X0, · · · , Xtau−1. The point is that
we can replace a deterministic time n by a stopping time τ and retain the Markov property. It is
a stronger statement than the Markov property. This property easily follows since {τ = n} only
depends on X0, · · · , Xn, the past and the present, and not on any of the future. Given the joint
event (τ = n, Xn = i), the future Xn+1, Xn+2, · · · is still independent of the past:

P (Xn+1 = j|τ = n, Xn = i, · · · , X0 = i0) = P (Xn+1 = j|Xn = i, · · · , X0 = i0) = pij

1.4 Hitting Times and Absorption Probabilities

Let {Xn, n ≥ 0} be a Markov chain with transition matrix P . The hitting time of a subset A of
S is the random variable HA defined by

HA = inf{n : Xn ∈ A}

The probability starting from i that the chain ever hits A is then

hAi = P (HA <∞|X0 = i)
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When A is a closed class, hAi is called the absorption probability. The mean time taken for the
chain to reach A; if P (HA <∞|X0 = i) = 1, is given by

kAi = E(HA|X0 = i) =

∞∑
n=0

nP (HA = n|X0 = i).

The vector of hitting probabilities hAi = (hAi , i ∈ S) satisfies the linear system h = Ph;

hAi = 1 for i ∈ A

hAi =
∑

j∈S pijh
A
j for i /∈ A.

In fact, if X0 = i then HA = 0 so hAi = 0. If X0 = i, i /∈∈ A, then HA ≥ 1, so by the Markov
property

P (HA <∞|X1 = j, X0 = i) = P (HA <∞|X0 = j) = hAj

and
hAi = P (HA <∞|X0 = i) =

∑
j∈S P (HA <∞, X1 = j|X0 = i)

=
∑

j∈S P (HA <∞|X1 = j)P (X1 = j|X0 = i) =
∑

j∈S pijh
A
j

Similarly, the probability fij that the chain ever visits state j satisfies

f = Pf.

The vector of mean hitting times kA = (kAi , i ∈ S) satisfies the following system of linear equations,
k = 1 + Pk;

kAi = 0 for i ∈ A

kAi = 1 +
∑

j /∈A pijk
A
j for i /∈ A

In fact, if X0 = i ∈ A, then HA = 0 so kAi = 0. If X0 = i /∈ A, then HA ≥ 1, so by the Markov
property

E(HA|X1 = j, X0 = i) = 1 + E(HA|X0 = j)

and
kAi = E(HA|X0 = i) =

∑
j∈S E(HAI{X1 = j}|X0 = i)

=
∑

j∈S E(HA|X1 = j, X0 = i)P (X1 = j|X0 = i) = 1 +
∑

j /∈A pijk
A
j .

Remark: The systems of these equations may have more than one solution. In this case, the vector
of hitting probabilities hA and the vector of mean hitting times kA are the minimal non-negative
solutions of these systems.

1.5 Examples

In this section we discusses examples of the Markov chains. First, consider the random walk, i.e,
the transition probability P satisfies

pi,i−1 = q, pi,i+1 = p, p, q > 0 and p+ q = 1.
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Example 1 (Simple Random Walk) The chain is irreducible and the period d = 2 with p
(2n+1)
ii =

0 and

p
(2n)
ii =

(2n)!

n!n!
pnqn ∼ (4pq)n√

2πn
,

by Stirlings formula. Thus, if p = q, then∑
p

(n)
ii ∼

∑ 1√
2πn

=∞

and the chain is recurrent. If p 6= q, then r = 4pq < 1 and∑
p

(n)
ii ∼

∑ rn√
2πn

<∞

and thus the chain is transient. If π is a stationary distribution, then

πi = q pi−1 + p πi+1

p (πi+1 − pi) = q (πi − πi−1)

Thus, for bounded solutions we must have πi = πi−1 and π0 = 0. Hence p = q the chain null
recurrent.
Example 2 (Absorbing end i = 0) S = {0, 1, · · · } with the aborning state i = 0, i.e., p00 = 1.
The chain two subclasses C0 = {0} and C1 = {1, 2, · · · }. C0 is positive recurrent and C1 is
transient.π = (1, 0, 0, · · · ) is a stationary distribution. The absorbing probability αi = fi0 satisfies

αi = pαi+1 + qαi−1

and
p(αi+1 − αi) = q(αi − αi−1)

Thus,
αi = A+B( qp)i

For q
p ≥ 1 since α is bounded, B = 0 and αi = A = 1. For q

p < 1, αi = ( qp)i since α0 = 1 and
α∞ = 0.
Example 3 (Absorbing ends i = 0, N) Let S = {0, 1, 2, · · · , N} and p00 = 1 and pNN = 1.
There are three subclasses C0 = {0}, C1 = {1, · · · , N − 1} and C2 = {N}. C0, C2 are positive
recurrent and C1 is transient.π = (α, 0, 0, · · · , β) with α, β ≥ 0 and α + β = 1 are statinary
distributions. The absorbing probability αi = fi0 satisfies

αi = pαi+1 + qαi−1

Using the same arguments in Example 2,

αi =


( q
p

)i−( q
p

)N

1−( q
p

)N
, p 6= q

1− i
N p = q

Example 4 (Reflecting rend i = 0) Let S = {0, 1, 2, · · · } and p0,1 = 1. The chain is irreducible
with period d = 2. For q

p < 1, fi1 = αi = ( qp)i−1, i > 1 from Example 2. But, if the chain is
recurrent, then fi1 = 1 for all i > 1. Thus, the chain ia transient pnij → 0 as n→∞.
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Now, for q
p ≥ 1 we have fi1 = 1 for i > 1 and f11 = q + pf21 = 1 and hence the chain is

recurrent. If π is a stationary distribution,

π0 = π1q

π1 = π0 + π2q

πi = πi−1p+ πi+1q, i ≥ 2

From the first two equations, pπ1 = qπ2. From the last equations, By induction in i we have
pπi = qπi+1. If p = q, πi = π0 and consequently π0 = 0 for all i ≥ 0, which implies the chain is null
recurrent.

Next, for q
p > 1 it follows from

∑
πi = 1

1 = π1(q +
∞∑
k=0

(
p

q
)k) = π1(q +

q

q − p
).

Thus, π1 = q−p
2q2

and

π0 =
q − p

2q
, πi = π1(

p

q
)i−1 for i ≥ 1.

Therefore, for q
p > 1 the chain is positive recurrent.

Example 5 (Reflecting ends i = 0, N) Let S = {0, 1, · · · , N} and p01 = 1 and pN,N−1 = 1. The
chain irreducible with period d = 2. As we did in Example 4, we have the stationary distribution

πi = (
p

q
)i−1

N−2∑
k=0

(
p

q
)k, 1 ≤ i ≤ N − 1

and π0 = qπ1 and πN = pπN−1 and thus the chain is positive recurrent.
Example 6 (Birth-and-death chain) Consider the Markov chain with state space S = {0, 1, 2, · · · }
and transition probabilities p00 = 1 and pi,i−1 = qi, pi,i+1 = pi for i ≥ 1. As in Example 2,
C0 = {i = 0} is positive recurrent and C1 = {1, 2, · · · } is transient. We wish to calculate the
absorption probability αi = fi0. Such a chain may serve as a model for the size of a population,
recorded each time it changes, pi being the probability that we get a birth before a death in a
population of size i.

αi = piαi+1 + qiαi−1

and
pi(αi+1 − αi) = qi(αi − αi−1)

Thus,

αi+1 = 1−
i∑

k=0

Πk
j=1

qj
pj

(1− α1)

There are two different cases:
(i) If A =

∑∞
k=0 Πk

j=1
qj
pj

=∞, then α1 = 1 and αi = 1 for all i ≥ 0.

(ii) If A =
∑∞

k=0 Πk
j=1

qj
pj
<∞, then 1− α1 = 1

A and

1− αi+1 =

∑i
k=0 Πk

j=1
qj
pj∑∞

k=0 Πk
j=1

qj
pj

,

so the population survives with positive probability.
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1.6 Exercise

Problem 1 Show that the relation ↔ is transitive
Problem 2 Show that for every Markov chain with countably many state,

lim
n→∞

1

n

n∑
m=1

p
(m)
ij =

fij
µj
.

(Hint: p
(m)
ij =

∑m
k=1 f

(m−k)
ij p(k)jj).

Problem 3 Consider an irreducible chain with {0, 1, · · · }. A necessary and sufficient condition for
the chain to be transient is the system u = Pu (ui =

∑
j∈S pijuj) has a bounded solution such that

ui is not a constant solution.
Problem 4 Complete the Example 5.
Problem 5 Consider a Markov chain with S = {0, 1, · · · } and transition probabilities:

pij =


pi > 0, j = i+ 1
ri ≥ 0, j = i
qi > 0, j = i− 1
0 otherwise

Let γn = Πn
k=1

qk
pk
, n ≥ 1.

(1) Show that the chain is transient if and only if
∑
γn <∞ and the chain is recurrent if and only

if
∑
γn =∞.

(2) Show that the chain is positive recurrent if and only if
∑ 1

γnpn
< ∞ and the chain is null

recurrent if and only if
∑ 1

γnpn
=∞.

Problem 6 Classify the states of a Markov chain

P =


p q 0 0
0 0 p q
p q 0 0
0 0 p q


where p+ q = 1 and p ≥ 0, q ≥ 0.

2 Continuous time Markov Chain

A continuous-time Markov process (CTMC) is a stochastic process {Xt, t ≥ 0} that satisfies the
Markov property and takes values from a set S called the state space; it is the continuous-time
version of a Markov chain. For s > t

P (Xs = j|σ(Xt)) = P (Xs = j|Ft),

where {Ft, t ≥ 0} is an increasing family of σ algebras, Xt is Ft measurable and σ(Xt) is the
σ algebra generated by the random variable Xt. In effect, the state of the process at time s is
conditionally independent of the history of the process before time t, given the state of the process
at time t. The process is characterized by ”transition rates” qij between states, i.e., qij (for i 6= j)
measures how quickly that i→ j transition happens. Precisely, after a tiny amount of time h, the
probability the state is now at j is given by

P (Xt+h = j|Xt = i) = qijh+ o(h), i 6= j,

11



where o(h) implies that o(h)
h → 0 as h → 0+. Hence, over a sufficiently small interval of time,

the probability of a particular transition (between different states) is roughly proportional to the
duration of that interval. The qij are called transition rates because if we have a large ensemble of
n systems in state i, they will switch over to state j at an average rate of nqij until n decreases
appreciably.

The transition rates qij are given as the ij-th elements of the transition rate matrix Q. As
the transition rate matrix contains rates, the rate of departing from one state to arrive at another
should be positive, and the rate that the system remains in a state should be negative. The rates
for a given state should sum to zero, yielding the diagonal elements to be

qii = −
∑
j 6=i

qij .

With this notation, if let
Pij(h) = P (Xh = j|X0 = i)

be the transition probability, then

lim
h→0+

P (h)− I
h

= Q.

The transition probability satisfies the semigroup property

P (t+ s) = P (t)P (s) for t, s ≥ 0 with P (0) = I

Thus,
P (t+ h) = P (t) = (P (h)− I)P (t), P (t− h)− P (t) = (I − P (h))P (t− h)

for t > 0, h > 0 and hence

P ′(t) = lim
τ→0

P (t+ τ)− P (t)

τ
= QP (t).

Since

lim
t→0+

eQt − I
t

= Q,

where eQt is the matrix exponential defined by

eQt =

∞∑
k=0

tk

k!
Qk,

we obtain
P (t) = eQt,

i.e., Q is the generator of P (t). Thus, letting pj(t) = P (Xt = j), the evolution of a continuous-time
Markov process is given by the first-order differential equation

d

dt
p(t) = p(t)Q, p(0) = π = initial distribution

The probability that no transition happens in some time r > 0 is

P (Xs = i, ∀ s ∈ (t, t+ r) |Xt = i) = e−qir.

12



That is, the probability distribution of the waiting time until the first transition is an exponen-
tial distribution with rate parameter qi = −qii, and continuous-time Markov processes are thus
memoryless processes. Letting τn denote the time at which the n-th change of state (transition)
occurs, we see that Yn = Xτ+n

, the state right after the n-th transition, defines the underlying
discrete-time Markov chain, called the embedded Markov chain. Yn keeps track, consecutively, of
the states visited right after each transition, and moves from state to state according to the one-step
transition probabilities πij = P (Yn+1 = j|Yn = i). This transition matrix {πij}, together with the
waiting-time rates qi, completely determines the CTMC, i.e.

qij = qiπij for all j 6= i.

Hence,
Q = Λ(Π− I), Λ = diag(q0, q1, · · · ).

Example (Poisson counting process) Let Nt, t ≥ be the counting process for a Poisson process
at rate λ. Then Nt forms a CTMC with S = {0, 1, 2, · · · } and qi,j = λ for j = i + 1, otherwise 0,
i.e. πi,i+1 = 1. This process is characterized by a rate parameter λ, also known as intensity, such
that the number of events in time interval (t, t + τ ] follows a Poisson distribution with associated
parameter λτ , i.e.,

P (Nt+τ −Nt = k) =
e−λτ (λτ)k

k!
k = 0, 1, . . . ,

where k is the number of jumps during (t, t+ τ ]. That is,

pk(τ) =
e−λτ (λτ)k

k!

satisfies
d

dt
pk(t) = −λpk(t) + λpk−1(t)

and thus d
dtp(t) = Qp(t). The increment Nt+h − Nt is independent of Ft and the gaps τ1, τ2, · · ·

between successive jumps are independent and identically distributed with exponential distribution;

P (τi ≥ t) = P (N(t) = 0) = e−λt, t ≥ 0.

Thus, a concrete construction of a Poisson process can be done as follows. Consider a sequence
{τn, n ≥ 1} be i.i.d. random variables with exponential law of parameter λ. Set T0 = 0 and for
n ≥ 1, Tn = τ1 + · · · + τn. Note that limn→∞ Tn = 1 almost surely, because by the strong law of
large numbers

lim
n→∞

Tn
n

= E(τ) =
1

λ

Nt, t ≥ 0 be the arrival process associated with the interarrival times Tn. That is

Nt =
∞∑
n=0

nI{Tn ≤ t ≤ Tn+1}. (2.1)

The characteristic function of Nt is given by

E(eiNtξ) =

∞∑
n=0

einξe−λt
(λt)n

n!
= eλt(e

iξ−1)

13



Thus,
E(Nt) = λt.

and λ is the expected number of arrivals in an interval of unit length, or in other words, is the
arrival rate. On the other hand, the expect time until a new arrival is 1

λ .

V ar(Nt) = λt

and thus
E(|Nt −Ns|2) = λ |t− s|+ (λ|t− s|)2

The Poisson process is continuous in mean of order 2 but the sample paths of the Poisson process
are discontinuous with jumps of size 1.
Example (Sum of Poisson processes) Let {Lt, t ≥ 0} and {Mt, t ≥ 0} be two independent
Poisson processes with respective rates λ and µ. The process Nt = Lt +Mt is a Poisson process of
rate λ+ µ.
Proof: Clearly, the process Nthas independent increments and N0 = 0. Then, it suces to show
that for each 0 < s < t, the random variable Nt − Ns has a Poisson distribution of parameter
(λ+ µ)(t− s).

P (Nt −Ns = n) =
n∑
k=0

P (Lt − Ls = k, Mt −Ms = n− k)

=
n∑
k=0

e−λ(t−s) (λ(t− s))k

k!
e−µ(t−s) (µ(t− s))n−k

(n− k)!
= e−(λ+µ)(t−s) ((λ+ µ)(t− s))n

n!
.

Example (Compounded Poisson process) Let {Xn, n ≥ 0} be a Markov chain with transition
probability Π and define the continuous Markov chain Xt by

Xt = XNt

Then,

pi,j(t) = P (Xt = j|X0 = i) =
∞∑
k=0

e−λt
(λt)k

k!
π

(k)
i,j

or equivalently

P (t) =
∞∑
k=0

e−λt
(λt)k

k!
Πk = eλ(Π−I)t = eQt

where Q = λ (Π− I) is the generator of Xt.
In general, the construction of a continuous-time Markov chain with generator Q and initial

distribution π is as follows. Consider a discrete-time Markov chain Xn, n ≥ 0 with initial distribu-
tion π and transition matrix Π. The stochastic process {Xt, t ≥ 0} will visit successively the sates
Y0, Y1, Y2, · · · starting from X0 = Y0. Denote by HY0 , · · · , HYn−1 the holding times in the state
Yk. We assume the holding times HY0 , · · · , HYn−1 are independent exponential random variables of
parameters qY0 , · · · , qYn−1 , i.e., for j ∈ S

P (Hj ≥ t) = e−qjt, t ≥ 0.

Let Tn = HY0 + · · ·+HYn−1 and

Xt = Yn, for Tn ≤ t < Tn+1

14



The random time

ζ =
∞∑
n=0

HYn

is called the explosion time. We say that the Markov chain Xt is not explosive if P (ζ =∞) = 1.
Let {Xt, t ≥ 0} be an irreducible continuous-time Markov chain with generator Q. The

following statements are equivalent:
(i) The jump chain Π is positive recurrent.
(ii) Q is not explosive and has an invariant distribution π.
Moreover, under these assumptions, we have

lim pij(t) =
1

qjµj
as t→∞,

where µj = E(τ |X0 = j) = E(τjj) is the expected return time to the state j.

2.1 Explosion

When a state space S is infinite, it can happen that the process, through successive jumps, moves
to state that have the shorter waiting time , i.e. have larger jump rates qi. The waiting time at
state i has the expected value E(τi) = 1

qi
.

Example (Birth process) A birth process {Xt, t ≥ 0} as generalization of the Poisson process
in which the parameter λ is allowed to depend on the current state of the process. The data for
a birth process consist of birth rates qi > 0, where i ≥ 0. Then, a birth process {Xt, t ≥ 0} is a
continuous time Markov chain with state-space S = {0, 1, 2, · · · } and generator Q:

qi,i = −qi, qi,j = qi for j = 1, qij = 0, otherwise.

That is, conditional on X0 = i, the holding times Hi, Hi+1, · · · are independent exponential random
variables of parameters qi, qi+1, · · · , respectively, and the jump chain is given by Yn = i + n.
Concerning the explosion time, two cases are possible:
(i) If

∑∞
j=0

1
qj
<∞, ζ <∞ a.s.

(ii) If
∑∞

j=0
1
qj

=∞, ζ =∞ a.s.

In fact, if
∑∞

j=0
1
qj
<∞, by the monotone convergence theory

E(ζ|X0 = i) = E(
∞∑
n=0

τn|X0 = i) =

∞∑
j=0

1

qj+i
<∞,

ζ <∞ a.s.. If
∑∞

j=0
1

qi+j
=∞, then Π∞j=0(1 + 1

qi+j
) =∞ and since τj is independent,

E(e−
∑∞
n=0 τn) = Π∞n=0E(e−τn) = Π∞j=1

(
1 +

1

gi+j

)−1

= 0,

so
∑∞

n=0 τn =∞ a.s..
Particular case (Simple birth process): Consider a population in which each individual gives

birth after an exponential time of parameter λ, all independently. If i individuals are present then
the first birth will occur after an exponential time of parameter iλ. Then we have i+ 1 individuals
and, by the memoryless property, the process begins afresh. Then the size of the population
performs a birth process with rates qi = iλ, i ≥ 1. Suppose X0 = 1. Note that

∑∞
i=1

1
iλ = ∞, so
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ζ = ∞ a.s. and there is no explosion in finite time. However, the mean population size growths
exponentially: E(Xt) = eλt: Indeed, let τ be the time of the first birth. Then if we let µ(t) = E(Xt),
then

µ(t) = E(XtI{τ ≤ t}) + E(XtI{τ > t}) =

∫ t

0
2λe−λsµ(t− s) ds+ e−λt

By letting r = t− s we have

eλtµ(t) = 1 + 2λ

∫ t

0
eλrµ(r) dr

and thus µ(t) = eλt.
For the birth process with qi = (i+ 1)2 is explosive since∑

i

1

(i+ 1)2
<∞.

With bounded qi the birth process is not explosive. If qi > 0 is not bounded, the Q is no longer
bounded.
Theorem (Explosive) The Markov chain corresponding to the transition rate matrix Q starting
from i explodes in finite time if and only if there exists a nonnegative bounded sequence with Ui > 0
that satisfies ∑

qijUj ≥ σ Ui for all i,

for some σ > 0.
Theorem (Non Explosive) If for some σ > 0, there exists a nonnegative U on S that satisfies∑

qijUj ≤ σ Ui for all i,

and Ui →∞ as qi →∞, then the chain is not explosive.

2.2 Invariant distribution

A probability distribution (or, more generally, a measure) π on the state space S is said to be
invariant for a continuous-time Markov chain {Xt, t ≥ 0} if πP (t) = π for all t ≥ 0. If we
choose an invariant distribution π as initial distribution of the Markov chain {Xt, t ≥ 0}, then the
distribution of is π for all t ≥ 0. If {Xt, t ≥ 0} is a continuous-time Markov chain irreducible and
recurrent (that is, the associated jump matrix Π is recurrent) with generator Q, then, a measure π
is invariant if and only if

πQ = 0,

and there is a unique (up to multiplication by constants) solution π which is strictly positive. On
the other hand, if we set αj = qiπj , then it is equivalent to say that α is invariant for the jump
matrix Π. In fact, we have α(Π− I) if and only if πQ = 0.

That is, to find the stationary probability distribution vector, we must next find α such that

α(I −Π) = 0,

with α being a row vector, such that all elements in α are greater than 0 and
∑

j∈S αj = 1. From
this, π may be found as

πj =
αj
qj

and normalize π so that
∑
πj = 1.
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A CTMC is called positive recurrent if it is irreducible and all states are positive recurrent. We
define the limiting probabilities for the CTMC as the long-run proportion of time the chain spends
in each state j ∈ S:

Pj = lim
t→∞

1

t

∫ t

0
I{Xs = j|X0 = i) ds, w.p.1.,

which after taking expected values yields

Pj = lim
t→∞

1

t

∫ t

0
Pij(s) ds.

When each Pj exists and
∑
Pj = 1, then P = (Pj , j ∈ S) (as a row vector) is called the limiting

(or stationary) distribution for the Markov chain.
Proposition 1 If Xt is a positive recurrent CTMC, then the limiting probability distribution P
exists, is unique, and is given by

Pj =
E(Hj)

E(τjj)
=

1

qjE(τjj)
.

In words: The long-run proportion of time the chain spends in state j equals the expected amount
of time spent in state j during a cycle divided by the expected cycle length (between visits to state
j)”. Moreover, the stronger mode of convergence (weak convergence) holds: Pj = limt→∞Pij(t).
Finally, if the chain is either null recurrent or transient, then Pj = 0, j ∈ S, no limiting distribution
exists.
Example (Birth-Death process) A birth-death chain is a continuous time Markov chain with
state space S = {0, 1, 2, · · · } (representing population size) and transition rates:

qi,i+1 = λi, qi,i−1 = µi, qi,i = −λi − µi

with µ0 = 0. Thus,

πi,i+1 = pi, πi,i−1 = 1− pi with pi =
λi

λi + µi
.

The matrix Π is irreducible. Notice that ∑
π

(n)
ii

λi + µi

is the expected time spent in state i. A necessary and sufficient condition for non explosion is then

∞∑
i=0

∑
π

(n)
ii

λi + µi
=∞.

On the other hand, equation πQ = 0 satisfied by invariant measures leads to the system

µ1π1 = λ0π0

λ0π0 + µ2π2 = (λ1 + µ1)π1

λi−1πi−1 + µi+1πi+1 = (λi + µi)πi, i ≥ 2.

So, πi is an equilibrium if and only if

λiπi = µi+1πi+1
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and

πi =
Πi−1
k=0λk

Πi
j=1µk

π0

Hence, an invariant distribution exists if and only if

c =
∑ Πi−1

k=0λk

Πi
j=1µk

<∞

and the invariant distribution is

π0 =
1

1 + c
, πi =

Πi−1
k=0λk

Πi
j=1µk

π0

2.3 Dynkin’s formula

Let τA is the exit time from A;
τA = inf{t ≥ 0 : Xt /∈ A}.

Theorem For λ > 0 the function

Ui = E(e−λ τAf(xτA)|X0 = i) (2.2)

is the unique solution to

(QU)j = λUj , j ∈ A, Ui = f(i), i /∈ A. (2.3)

Proof: First, note that if i /∈ A, then τA = 0 and Ui = fi. Since d
dt(e

−λtP (t)) = (Q− λ I)e−λtP (t),

eλtP (t) = I +

∫ t

0
e−λsP (s)(Q− λ I) ds

Thus

Mt = e−λtf(Xt)− f(i)−
∫ t

0
e−λs(Q− λI)f(Xs) ds is a martingale (2.4)

with respect (Ω,Ft, P ). In fact, t ≥ s

Ei(Mt −Ms|Fs) = e−λsEi(e−λ(t−s)f(Xt)− f(Xs)−
∫ t

s
e−λ(σ−s)(Q− λI)f(Xσ) dσ|Fs)

= e−λse−λ(t−s)P (t− s)f(Xs)− f(Xs)−
∫ t

s
e−λ(σ−s)P (σ − s)(Q− λI)f(Xs) dσ = 0,

where we used
Ei(f(Xt)|Fs) = P (t− s)f(Xs).

Thus, by the optional sampling theorem E(Mτ ) = E(Mτ ) = 0 for a stooping time τ ≥ 0 and we
have

E(e−λτφ(Xτ )|X0 = i) = φ(i) + E(

∫ τ

0
e−λs(Q− λ I)φ(Xs) ds|X0 = i). (2.5)

Suppose U satisfies (2.3), letting φ = U and τ = τA,

E(e−τAU(xτA)|X0 = i)− Ui = 0,
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which implies (2.2) holds.
Remark (1) Equation

λUj − (QU)j = gj , j ∈ A, Ui = f(i), i /∈ A. (2.6)

has the unique solution of the form

Ui = E(e−τAf(xτA) +

∫ τA

0
e−λs g(Xs) ds|X0 = i)

(2) If λ = 0 it is required that P (τA <∞) = 1.
(3) If U satisfies (QU)j = 1, j ∈ A and Ui = 0 for i /∈ A, then

E(τA|X0 = j) = Uj

2.4 Excises

Problem 1 Show that
E(Nt) = λt and V ar(Nt) = λt.

Problem 2 The process defined by (2.1) is the Poisson process.
Problem 3 Construct a binary S = {0, 1} continuous time Markov processes.
Problem 4 Let {Lt, t ≥ 0} and {Mt, t ≥ 0} be two independent Poisson processes with respective
rates λ and µ. Show that the process Xt = Lt − Mt is a continuous time Markov chain on
S = {integers} and find its generator. Let Pn(t) = P (Xt = n|X0 = 0). Show that

∞∑
n=−∞

Pn(t)zn = e−(λ+µ)teλzt+µz
−1t, |z| 6= 0

and
E(Xt) = (λ− µ)t, E(|Xt|2) = (λ+ µ)t+ (λ− µ)2 t2.

3 Markov Process

Let (S,B) be a measurable space. A discrete time Markov process {Xn, n ≥ 0} is fully described
by the one step transition probability Π(x,A) defined for x ∈ S and A ∈ B, which is a probability
measure on (S,B) and

Π(x,A) = P (X1 ∈ A|X0 = x).

The multistep transition probability {Π(n)(x,A)} are determined by

Π(n+1)(x,A) =

∫
S

Π(n)(y,A)Π(x, dy).

The, they satisfies the Chapman-Kolmogorov equations;

Π(n+m)(x,A) =

∫
S

Π(n)(y,A)Π(m)(x, dy).

In the continuous time Markov process {Xt, t ≥ 0} we use the transition probabilities p(t, x,A)
defined for t ≥ 0, x ∈ S and A ∈ B which is defined by

p(t, x,A) = P (Xt ∈ A|X0 = x).
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They satisfy the Chapman-Kolmogorov equations

p(t+ s, x,A) =

∫
S
p(s, y, A)p(t, x, dy).

Given transition probabilities, we define a consistent family of finite dimensional distributions on
(Ω,F , P ) by

Ft1,··· ,tn(B1×· · ·×Bn) =

∫
B1

∫
B2

· · ·
∫
Bn

p(t1, x, dy1)p(t2−t1, y1, dy2) · · · p(tn−tn−1, yn−1, dyn) (3.1)

for the cylinder set, given arbitrary 0 < t1 < · · · < tn and Bj ∈ B. It reflects the fact that the
increments Xtj−Xtj−1 , 1 ≤ j ≤ n are independent random variables. Conversely, such a consistent
family of finite distributions by the Kolmogorov extension theory there exists a Markov process ωt
which satisfies

P (
n⋂
j=1

{ωtj ∈ Bj}) = Ft1,··· ,tn(B1 × · · · ×Bn)

Suppose {Yn, n ≥ 1} is i.i.d. random variables with distribution α. Let Sn = Y1 + · · · + Yn
and Nt is a Poisson process. We define s compound process Xt = SNt . Such a process inherits
the independent increment property from Nt. The distribution of any increment Xt+h−Xt is that
of XNt and determined by the distribution of Sn where n is random variable and has a Poisson
distribution with parameter λt;

E(ei(ξ,Xt)) =
∞∑
n=0

e−λt
(λt)n

n!
α̂(ξ)n = e−λteλtα̂ = eλt(α̂−1) = eλt

∫
S(ei(ξ,x)−1)dα(x),

where

E(ei(ξ,
∑n
k=1 Yk)) = E(Πn

k=1e
i(ξ,Yk)) = α̂(ξ)n, α̂(ξ) =

∫
S
eiξx dα(x).

In other words Xt has an infinitely divisible distribution with a Levy measure given by λtα(x). If
we let M = λα, we have

E(ei(ξ,Xt)) = et
∫
S(ei(ξ,x)−1) dM(x). (3.2)

3.1 Infinite number of small jumps

A Poisson process cannot have an infinite number of jumps in a finite interval. But if we consider
compounded Poisson processes we can, in principle by adding an infinite number of small jumps
obtain a finite sum. That is, let {Xk(t)} be a family of mutually independent compounded Poisson
process with Mk = λk αk and

Xt =
∑
k

Xk(t)

If the sum exists then it is a process with independent increments. We may center these process
with suitable constants ak t and we define

Xt =
∑
k

(Xk(t)− ak t)

We assume ∑
k

∫
|x|>1

dMk(x) <∞ (3.3)
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and ∑
k

∫
|x|≤1

x2 dMk(x) <∞ (3.4)

We decompose Mk as Mk = M
(1)
k +M

(2)
k corresponding to jump of sizes |x| ≤ and |x| > 1. From

M (2) =
∑
k

M
(2)
k

sums to a finite mesures and the corresponding process

X
(2)
t =

∑
k

X
(2)
k (t)

exits. Since ∑
k

P ( sup
0≤s≤t

|Xk(s)| 6= 0) ≤
∑
k

(1− e−tM
(2)
k (R)) ≤

∑
k

tM
(2)
k (R) <∞

it follows from Borel-Cantelli lemma, in any finite interval the sum is almost surely a finite sum.

For the convergence of
∑

kX
(1)
k (t) we let ak =

∫
|x|≤1 x dMk(x) and we have

E(|Xk(t)− akt|2) = t

∫
|x|≤1

x2 dMk(x)

From (3.4) and the two series theorem ∑
k

(Xk(t)− ak t)

converges to X
(1)
t . A simple applications of Doob’s inequality shows that in fact a.s. uniformly

converges in finite time interval, i.e., define the tail

Tn(t) =
∑
k≥n

(X
(1)
k (t)− akt).

Since E(X
(1)
k (t)− ak t) = 0, Tn(t) is a martingale and by the Doob’s martingale inequality

P ( sup
0≤s≤t

|δ)frac1δ2
∑
k≥n

V (X
(1)
k (t)− ak t)→ 0 as n→∞.

If we now reassemble the pieces we obtain

E(eiξXt) = e
t
∫
|x|≤1(eiξx−1−iξ x)dM(x)+t

∫
|x|>1(eiξx−1) dM(x)

, (3.5)

which is the Levy-Kintchine representation of infinitely divisible distributions except for the missing
Brownian motion term.
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3.2 Feller semigroup

Let B(S) be the Banach space of all essentially bounded functions f(x) : S → R with the norm

|f |∞ = sup
x∈S
|f(x)|

Define a family of bounded linear operators {T (t), t ≥ 0} in L(B(S)) by

(T (t)f)(x) =

∫
S
f(y)p(t, x, dy) = Ex(f(Xt)).

where
Ex(f(Xt)) = E(f(Xt)|X0 = x)

The collection of {T (t), t ≥ 0} has the properties
(1) T (t) maps nonnegative function on (S,B) into nonnegative functions.
(2) |T (t)f |∞ ≤ |f |∞ for all f ∈ X and T (t)1 = 1. Thus, ‖T (t)‖ = 1.
(3) T (0) = I, T (t+ s) = T (t)T (s) (semigroup property) for t, s ≥ 0.

Let C0(S) denote the space of all real-valued continuous functions on S that vanish at infinity,
equipped with the sup-norm |f | = |f |∞. A Feller semigroup on C0(S) is a collection {T (t), t ≥ 0}
of positive linear operators from C0(S) to itself such that
(1) |T (t)f | ≤ |f | for all t ≥ 0,
(2) the semigroup property: T (t+ s) = T (t)T (s) for all s, t ≥ 0,
(3) limt→0+ |T (t)f − f | = 0 for every f in C0(s)) (strongly continuity at 0).

Thus, we let X be the subspace of B(S) such that

X = {f ∈ B(S) : lim
t→0+

|T (t)f − f | → 0}

and the collection {T (t), t ≥ 0} forms the strongly continuous semigroup on X.
Let {Xn, n ≥ 0} be a discrete time Markov process with transition probability Π(x,A). Define

the bounded linear operator in X by

(Πf)(x) =

∫
S
f(y)Π(x, dy) = E(f(X1)|X0 = x)

Define a continuous time Markov process by Xt = XNt . Then,

T (t) =

∞∑
n=0

eλt
(λt)n

n!
Πn = eλt(Π−I) = eAt

where A = λ(Π− I).
In general we define the infinitesimal A of {T (t), t ≥ 0} by

Af = s− lim
t→0+

T (t)f − f
t

with domain

dom(A) = {f ∈ X : s− lim
t→0+

T (t)f − f
t

exists}.

If {Xt, t ≥ 0} is Markov process with stationary increments then we have a convolution
semigroup

(T (t)f)(x) =

∫
S
f(x, y)µt(dy),
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where µt+s = µt ∗ µs for t, s ≥ 0 and

p(t, x,A) =

∫
S

1A(x+ y)µt(dy)

Then,

Af = s− lim
t→0+

µt ∗ f − f
t

.

Theorem (C0-semigroup) Let u(t) = T (t)f = Ex(f(Xt)).
(1) If u(t) = T (t)f ∈ C(0, T ;X) for every f ∈ X.
(2) If f ∈ dom (A), then u ∈ C1(0, T ;X) ∩ C(0, T ; dom(A)) and

d

dt
u(t) = Au(t) = AT (t)f.

(3) The infinitesimal generator A is closed and densely defined. For f ∈ X

T (t)f − f = A
∫ t

0
T (s)f ds. (3.6)

(4) λ > 0 the resolvent is given by

(λ I −A)−1 =

∫ ∞
0

e−λsT (s) ds (3.7)

with estimate

|(λ I −A)−1| ≤ 1

λ
. (3.8)

Proof: (1) follows from the semigroup property and the fact that for h > 0

u(t+ h)− u(t) = (T (h)− I)T (t)f

and for t− h ≥ 0
u(t− h)− u(t) = T (t− h)(I − T (h))f.

Thus, x ∈ C(0, T ;X) follows from the strong continuity of S(t) at t = 0.
(2)–(3) Moreover,

u(t+ h)− u(t)

h
=
T (h)− I

h
T (t)f = T (t)

T (h)f − f
h

and thus T (t)f ∈ don(A) and

lim
h→0+

u(t+ h)− u(t)

h
= AT (t)f = Au(t).

Similarly,

lim
h→0+

u(t− h)− u(t)

−h
= lim

h→0+
T (t− h)

T (h)f − f
h

= S(t)Af.

Hence, for f ∈ dom(A)

T (t)f − f =

∫ t

0
T (s)Af ds =

∫ t

0
AT (s)f ds = A

∫ t

0
T (s)f ds (3.9)
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If fn ∈ don(A)→ f and Afn → y in X, we have

T (t)f − f =

∫ t

0
T (s)y ds

Since

lim
t→0+

1

t

∫ t

0
T (s)y ds = y

f ∈ dom(A) and y = Af and hence A is closed. Since A is closed it follows from (3.9) that for
f ∈ X ∫ t

0
T (s)f ds ∈ dom(A)

and (3.6) holds. For f ∈ X let

fh =
1

h

∫ h

0
T (s)f ds ∈ dom(A)

Since fh → f as h→ 0+, dom(A) is dense in X.
(4) For λ > 0 define Rt ∈ L(X) by

Rt =

∫ t

0
e−λsT (s) ds.

Since A− λ I is the infinitesimal generator of the semigroup e−λtT (t), from (3.6)

(λ I −A)Rtf = f − e−λtT (t)f → f as t→∞.

Since A is closed and |e−λtT (t)| → 0 as t→∞, we have R = limt→∞Rt satisfies

(λ I −A)Rf = f.

Conversely, for f ∈ dom(A)

R(A− λ I)f =

∫ ∞
0

e−λsT (s)(A− λ I)f ds = lim
t→∞

e−λtT (t)f − f = −f

Hence

R =

∫ ∞
0

e−λsT (s) ds = (λ I −A)−1

Since for f ∈ X
|Rf | ≤

∫ ∞
0
|e−λsT (s)φ| ≤

∫ ∞
0

e(−λ)s|φ| ds =
1

λ
|f |,

we have

|(λ I −A)−1| ≤ 1

λ
, λ > 0l.
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3.3 Infinitesimal generator

In this section we discuss examples of Markov process and the corresponding generators.
Example (Poisson process) For a Poisson process {Nt. t ≥ 0}

Af = λ(f(i+ 1)− f(i)), i ∈ S = {0, 1, · · · )

Example (Transport Process) For the shift (deterministic) process xt = ct

T (t)f = E(f(Xt)|X0 = x) = f(x+ ct)

and
Af = c f ′(x) with dom(A) = Lipschitz functions.

Example (Levy process) Consider a process that has the Levy representation

Ex(eiξXt) = et
∫
R(eiξz−1) dM(z)eiξx

with a finite Levy measure M(dx). Then,

Af =

∫
R

(f(x+ z)− f(x)) dM(z). (3.10)

In fact we have for f = eiξx

T (t)eiξx = et
∫
R(eiξz−1) dM(z)eiξx

and thus

Aeiξx =

∫
R

(eiξ(x+z) − eixξ) dM(z).

Since for any f we have f(x) = 1
2π

∫
R f̂ e

iξx dξ by the inverse Fourier transform, (3.10) holds.
Example (Brownian Motion) A Brannian motion {Bt t ≥ 0} is a Markov process with the
transition probability

p(t, x,A) =

∫
A

1√
2πtσ

e−
|y−x|2

2σ2t dy

and

Ex(eiξBt) =
1√

2πtσ

∫
R
eiξye−

|y−x|2

2σ2t dy = e−
σ2

2
t|ξ|2eiξx

Thus,

(Af)(x) = − 1

2π

∫
R

σ2

2
|ξ|2f̂(ξ)eiξx dξ = −σ

2

2
f ′′(x) with dom(A) = C2

0 (R).

Example (Levy-Kintchine process) For the process defined by (3.5) we have

(Af)(x) =
σ2

2
f ′′(x)+cf ′(x)+

∫
|z|≤1

(f(x+z)−f(x)−zf ′(x)) dM(z)+

∫
|z|>1

(f(x+z)−f(x)) dM(z).

Example (Cauchy Process) A Cauchy process {Xt t ≥ 0} is a Markov process with the transition
probability

p(t, x,A) =
1

π

∫
A

t

t2 + (y − x)2
dy

and

Ex(eiξXt) =
1

π

∫
R
eiξy

t

t2 + (y − x)2
dy = e−t|ξ|eiξx
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Thus,

(Af)(x) = − 1

2π

1

π

∫
R
|ξ|f̂(ξ)eiξx dξ =

1

π

∫
R

f(z)− f(x)

|x− z|2
dz, with dom(A) = C1

0 (R)

In general, for the symmetric α-stable Levy process

Ex(eiξXt) = e−t|ξ|
α
eiξx.

Example (Gamma Process) A Gamma process {Xt, t ≥ 0} is a Markov process with the
transition probability

p(t, x,A) =

∫
A

1

Γ(t)
e−(y−x)(y − x)t−1 dy

and

Ex(eiξXt) =
1

Γ(t)

∫
R
eiξxe−(1−iξ)(y−x))(y − x)t−1 dy = (1− iξ)−teiξx

Thus,

(Af)(x) =
1

2π

∫
R
e−(x−z) f(x+ z)− f(x)

|x− z|
dz, with dom(A) = C1

0 (R)

3.4 Dynkin’s formula

Theorem Let f be a bounded continuous function in dom(A) and τ be a stoping time with
E(τ) <∞. Then

Mt = f(Xt)− f(x)−
∫ t

0
Af(Xs) ds

is a martingale with respect (Ω,Ft, P ). Proof: For t ≥ s

Ex(Mt−Ms|Fs) = Ex(f(Xt)−f(Xs)−
∫ t

s
Af(Xσ) dσ|Fs) = (T (t−s)f−f(Xs)−

∫ t

s
T (σ−s)Af(Xs) dσ = 0.

Remark For f ∈ dom(A)

eλtf(Xt)− f(x)−
∫ t

0 e
−λsAf(Xs) ds for λ ∈ R

f(Xt)exp(−
∫ t

0
Af(Xs)
f(Xs)

ds) for uniformly postive f

are martingales.
The characteristic operator Ac defined by

(Acf)(x) = lim
U↓x

Ex
[
f(XτU )

]
− f(x)

Ex[τU ]
,

where the sets U form a sequence of open sets Uk that decrease to the point x in the sense that

Uk+1 ⊆ Uk and

∞⋂
k=1

Uk = {x},

and
τU = inf{t ≥ 0|Xt 6∈ U}
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is the exit time from U for Xt. dom(Ac) denotes the set of all f for which this limit exists for all
x ∈ S and all sequences {Uk}. If Ex(τU ) =∞ for all open sets U containing x, define Acf(x) = 0.
The characteristic operator is an extension of the infinitesimal generator, i.e., dom(A) ⊂ don(Ac)
and Acf = Af for f ∈ dom(A).
Theorem (Dynkin’s formula) Let f be a bounded continuous function in dom(Ac) and τ be a
stoping time with E(τ) <∞. Then,

Ex(f(Xτ )) = f(x) + Ex(

∫ τ

0
Acf(Xs) ds).

3.5 Invariant measure

Let T (t)f = Ex(f(Xt)) =

∫
S
f(y)p(t, x, y) dy. Then for f ∈ dom(A)

∫
S
f(y)p(t, x, y) dy = f(x) +

∫ t

0

∫
S
p(s, x, y)Af(y) dy.

Define the adjoint operator A∗ of A is defined by∫
Afφ dy =

∫
fA∗φdy (3.11)

for all f ∈ dom(A). Since dom(A) is dense and there exists a unique closed linear operator A∗ in
X that satisfies (3.11). Thus, we have∫

S
(

∫
p(t, x, y)− δx(y)−A∗

∫ t

0
p(s, x, y) ds)f(y) dy = 0

for all f ∈ A. Since dom(A) is dense in X, it follows that

p(t, x, ·) = δx +A
∫ t

p(s, x, ·) ds.

Or, equivalently the transition probability p satisfies the Kolmogorov forward equation

∂p

∂t
= A∗p(t), p(0) = δx. (3.12)

As we discussed in Section 4.1, if the state space S is countable, the invariant distribution π is
defined as

π = πP (t), t > 0

or equivalently
πQ = 0

where P (t) is the transition probability matrix and Q is the transition rate matrix of the continuous
time Markov chain {Xt, t ≥ 0}. For the case S is continuum (e.g. S = R) we define the invariant
measure µ (a bounded linear functional on C(S)) by

µ(A) =

∫
S
p(t, x,A) dµ(x)

for all A ∈ B and t > 0, or equivalently

〈µ, T (t)f〉 = 〈µ, f〉
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for all f ∈ C(S) and t > 0. One can state this as T (t)∗µ = µ for all t > 0 or A∗µ = 0, i.e.,

〈µ,Af〉 = 0 for all f ∈ dom(A).

For the Ito’s diffusion process

Af =
a(x)

2
f ′′ + b(x)f ′

and dµ = φdx satisfies

A∗φ = (
a(x)

2
φ′ + (−b(x) +

a′(x)

2
)φ)′ = 0

and thus

φ(x) = c e
∫ x
0

2b−a′
a

dx.

4 Martingale Process

In this section we consider a probability space (Ω,F , P ) and a nondecreasing sequence of σ-fields
Fn contained in {Fn, n ≥ 0}.
Definition A sequence of real random variables {Mn} is called a martingale with respect to the
filtration {Fn, n ≥ 0} if
(1) For each n, Mn is Fn-measurable (that is, Mn is adapted to the filtration Fn,
(2) For each n, E(|Xn|) <∞,
(3) For each n, E(Mn+1|Fn) = Mn.
The sequence {Mn} is called a supermartingale (or submartingale) if property (iii) is replaced by

E(Mn+1|Fn) ≥Mn ( or E(Mn+1|Fn) ≤Mn).

Notice that the martingale property implies that E(Mn) = E(M0) for all n. On the other hand,
condition (iii) can also be written as

E(∆Mn|Fn−1) = 0

for all n, where ∆Mn = Mn −Mn−1.
Example 1 Suppose that ξn are independent centered random variables (E(ξk) = 0, k ≥ 1.
Set M0 = 0 and Mn = ξ1 · · · + ξn. Then Mn is a martingale with respect to the sequence of
Fn = σ(ξ1, · · · , ξm), n ≥ 1.
Example 2 Suppose that {ξn, n ≥ 1} are independent random variable such that P(ξn = −1) =
1 − p, P (ξn = 1) = p, 0 < p < 1. Then Mn = (1−p

p )ξ1+···+ξn is a martingale with respect to the
sequence of σ-fields σ(ξ1, · · · , ξn), n ≥ 1. In fact,

E(Mn+1|Fn) = E((1−p
p )ξn+1Mn|Fn) = E((1−p

p )ξn+1)E(Mn|Fn) = Mn.

Example 3 If Mn is a martingale and ϕ is a convex function such that E(|ϕ(Mn)|) ≤<∞ for all
n then ϕ(Mn) is a submartingale. In fact, by Jensens inequality for the conditional expectation we
have

E(ϕ(Mn+1)|Fn) ≥ ϕ(E(Mn+1|Fn)) = ϕ(Mn)

In particular, if {Mn} is a martingale such that E(|Mn|p) <∞ for all n and for some p ≥ 1, then
|Mn|p is a submartingale.
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Example 4 Suppose that {Fn, n ≥ 0} is a given filtration. We say that Hn, n ≥ 1 is a predictable
sequence of random variables if for each n, Hn is Fn−1-measurable. The martingale transform of a
martingale Mn by a predictable sequence Hn as the sequence

(H ·M)n = M0 +
n−1∑
j=1

Hj∆Mj ,

defines a martingale.
Example 5 (Likelihood Ratios) Let {Yn, n ≥} be i.i.d. random variables and let f0 and f1 be
probability density functions. Define the sequence of probability ratios;

Xn =
f1(Y0)f1(Y1) · · · f1(Yn)

f0(Y0)f0(Y1) · · · f0(Yn)

and let Fn = σ(Yk, 0 ≤ k ≤ n). The, {Xn, n ≥ 0} is a martingale, i.e.,

E(Xn+1|Fn) = E(
f1(Yn+1)

f0(Yn+1)
Xn|Fn) = E(

f1(Yn+1)

f0(Yn+1)
)Xn = Xn

where we used

E(
f1(Yn+1)

f0(Yn+1)
) =

∫
f1(y)

f0(y)
f0(y) dy = 1.

Example 6 (Exponential Martingale) Suppose that {Yn n ≥ 1} are i.i.d. random variables
with distribution N(0, σ2). Set M0 = 1, and

Mn = e
∑n
k=1 Yk−

σ2

2

Then, {Mn} is a nonnegative martingale. In fact

E(Mn|Fn−1) = E(eYn−
σ2

2 Mn−1|Fn−1) = E(eYn−
σ2

2 )Mn−1 = Mn−1.

Example 7 (Martingale induced by Eigenvector of Transition Matrix) Let {Yn, n ≥ 0} be
a Poisson process with the transition probability P . Assume a bounded sequence f(i) ≥ 0 satisfies

f(i) =
∑
j

pijf(j)

Let Xn = f(Yn) and Fn = σ(Yk, 0 ≤ k ≤ n). Then {Xn, n ≥ 0} is a martingale. In fact,
E(|Xn|) <∞ since f is bounded and

E(Xn+1|Fn) = E(f(Yn+1)|Fn) = E(f(Yn+1)|Yn) =
∑
j

pYn,jf(j) = f(Yn) = Xn

Example 8 (Radon-Nikodym derivatives) Suppose Z be a uniformly distributed random
variable on [0, 1], define the sequence of random variables by setting

Yn =
k

2n

for the unique k (depending on n and Z) that satisfies

k

2n
≤ Z <

k + 1

2n
.
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That is, Yn determines the first n bits of the binary representation of Z. Let f be a bounded
function on [0, 1] and form the finite difference quotient sequence

Xn = 2n(f(Yn + 2−n)− f(Yn)).

Then {Xn, n ≥ 0} is a martingale. In fact,

E(Xn+1|Fn) = 2n+1E(f(Yn+1 + 2−(n+1))− f(Yn+1)|Fn)

= 2n+1(
1

2
(f(Yn + 2−(n+1) − f(Yn)) +

1

2
(f(Yn + 2−n)− f(Yn + 2−(n+1))))

= 2n(f(Yn + 2−n)− f(Yn)) = Xn.

where we used the fact that Z conditional on Fn has a uniform distribution [Yn, Yn+2−n) and thus
Yn+1 is equally likely to be Yn or Yn + 2−(n+1).

4.1 Doob’s decomposition

Theorem (Doob’s Decomposition) Let (Xn,Fn) be a submartingale. The, there exit a unique
Doob’s decomposition of Xn such that for a martingale (Mn,Fn) and a predictable increasing
sequence (An,Fn−1) with A0 = 0,

Xn = Mn +An.

Proof: Define
Mn = X0 +

∑n
j=1(Xj − E(Xj |Fj−1))

An =
∑n

j=1(E(Xj |Fj−1)−Xj−1).

It is easy to see that (Mn, An) gives the desired decomposition. For the uniqueness, if we let
Xn = M ′n +A′n the other decomposition, then

E(A′n+1 −A′n|Fn) = E(An+1 −An) + (Mn+1 −Mn)− (M ′n+1 −M ′n)|Fn)

and thus we have
A′n+1 −A′n = An+1 −An

Since A′0 = A0, this implies A′n = An for all n ≥ 1 and hence the decomposition is unique.

The Doob’s decomposition plays a key role in study of square integrable martingale (Mn,Fn)),
i.e., E(M2

n) < ∞ for all n ≥ 0. Since {M2
n, n ≥ 0} is a submartingale, from Theorem there exits

a martingale mn and a predictable increasing sequence (〈M〉n,Fn−1) such that

M2
n = mn + 〈M〉n

The sequence (〈M〉n,Fn−1) is called the quadratic variation of {Mn} and is given by

〈M〉n =

n∑
j=1

E((∆Mj)
2|Fj−1),

where

E((∆Mj)
2|Fj−1) = E(M2

j − 2MjMj−1 +M2
j−1|Fj−1) = E(M2

j −M2
j−1|Fj−1) = 〈M〉j − 〈M〉j−1

30



For k ≥ `
E((Mk −M`)

2|F`) = E(M2
k −M2

` |F`) = E(〈M〉k − 〈M〉`|F`).

In particular, if M0 = 0, then E(M2
k ) = E〈M〉k.

If (Xn,Fn) and (Yn,Fn) are square integrable martingales, we define

〈X,Y 〉n =
1

4
(〈X + Y 〉n − 〈X − Y 〉n).

It is easy to verify that
XnYn − 〈X,Y 〉n is a martingale (4.1)

and for k ≥ `
E((Xk −X`)(Yk − Y`)|F`) = E(〈X,Y 〉k − 〈X,Y 〉`|F`). (4.2)

Moreover, we have

〈X,Y 〉n =
n∑
j=1

E(∆Xj∆Yj |Fj−1) (4.3)

In the case Xn =
∑n

k=1 ξk and Yn =
∑n

k=1 ηk, where {ξk} and {ηk} are sequences of independent
square integrable random variables with E(ξk) = E(ηk) = 0, then

〈X,Y 〉n =

n∑
j=1

E(ξjηj).

Theorem For the martingale transform

(H ·M)n = M0 +
n∑
j=1

Hj∆Mj ,

the quadratic variation is given by

〈H ·M〉n =
n∑
j=1

E((Hj∆Mj)
2|Fj−1) =

n∑
j=1

|Hj |2E(|∆Mj |2|Fj−1) =
n∑
j=1

|Hj |2∆〈M〉j .

4.2 Optional Sampling

Example 9 Let {ξk}, k ≥ 1 be an i.i.d sequence with Bernoulli random variables, P (ξk = 1) =
p, P (ξk = −1) = 1− p. Let Fn = σ(η1, ·, ηn) and assume the player’s stake Vn (Fn−1-measurable)
at the n-th turn. Then the player’s gain Xn is

Xn =
n∑
k=1

Vkξk

Then, (Xn,Fn)) ia martingale if p = 1
2 . Consider the gambling strategy that doubles the stake

after a loos and drops out the game immediately after a win, i.e, the stakes are

Vn =

{
2n−1 if ξ1 = · · · = ξn−1 = −1
0 otherwise

Then, if ξ1 = · · · = ξn−1 = −1, the total loss after n turns is
∑n

i=1 2i−1 = 2n−1. Thus, if ξn+1 = 1,
we have

Xn+1 = Xn + Vn+1 = −(2n − 1) + 2n = 1.
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Let τ = inf{n ≥ 1 : ξn = 1}. If p = 1
2 , the the game is fair and P (τ = n) = (1

2)n, P (τ < ∞) = 1
and E(Xτ ) = 1. Therefore, for a fair game, by applying this strategy, a player can in finite time
complete the game successfully in increasing his capital by one unit (E(Xτ ) = 1 > X0 = 0).

The following the basic theorem the typical case in which E(Xτ ) = E(X0) of a Markov time
τ ≥ 0.
Theorem (Optional Sampling) Let (Xn,Fn) is a martingale (or submartingale), and τ1 ≤ τ2

are stopping times. If

E(|Xτi |) <∞, lim inf
n→∞

E(|Xn|I{τi > n}) = 0, (4.4)

then
E(τ2|Fτ1) = (≥)Xτ1 and E(Xτ2) = (≥)E(Xτ1).

Proof: It suffices to prove that for A ∈ Fτ1 ,∫
A∩{τ2≥τ1}

Xτ2 dP =

∫
A∩{τ2≥τ1}

Xτ1 dP

for every A ∈ Fτ1 , or equivalently∫
B∩{τ2≥n}

Xτ2 dP =

∫
B∩{τ2≥n}

Xτ1 dP, (4.5)

for B = A ∩ {τ1 = n} and all n ≥ 0. Since∫
B∩{τ2≥n}

Xn dP =

∫
B∩{τ2=n}

Xn dP +

∫
B∩{τ2>n}

E(Xn+1|Fn) dP

=

∫
B∩{n≤τ2≤n+1}

Xτ2 dP +

∫
B∩{τ2≥n+1}

Xn+2 dP

· · · =
∫
B∩{n≤τ2≤m}

Xτ2 dP +

∫
B∩{τ2>m}

Xm dP,

∫
B∩{n≤τ2≤m}

Xτ2 dP +

∫
B∩{τ2≥n}

Xn dP =

∫
B∩{τ2>m}

Xm dP.

Since Xm = 2X+
m − |Xm|, we have∫
B∩{τ2≥n}

Xτ2 dP = lim sup
m→∞

(

∫
B∩{τ2≥n}

Xn dP −
∫
B∩{τ2>m}

Xm dP )

=

∫
B∩{τ2≥n}

Xn dP − lim inf
m→∞

∫
B∩{τ2>m}

Xm dP =

∫
B∩{τ2≥n}

Xn dP,

which implies (4.5).
Example 9 (revisited)∫

τ>n
|Xn| dP = (2n − 1)P (τ > n) = (2n − 1)2−n → 1 as n→∞.

and condition (8.1) is violated.
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Corollary For some N ≥ 0 such that P (τ1 ≤ N) = P (τ2 ≤ N) = 1, condition (8.1) holds and thus
E(Xτ ) = E(X0).
Corollary If {Xn} is uniformly integrable, then condition (8.1) holds and thus E(Xτ ) = E(X0).
Theorem Let {Xn} be a martingale (or submartingale) and τ be a stopping time with respect to
Fn = σ(Xk, k ≤ n). Suppose E(τ) <∞ and for all n and some constant C

E(|Xn+1 −Xn||Fn) ≤ C ({τ ≥ n}, P − a.s.)

Then,
E(|Xτ |) <∞ and E(Xτ ) = (≥)E(X0).

Proof: Let Y0 = 0 and Yj = |Xj −Xj−1|, j ≥ 1 Then, |Xτ | ≤
∑τ

j=0 Yj and

E(|Xτ |) ≤ E(
τ∑
j=0

Yj) =
∞∑
n=0

∫
τ=n

n∑
j=0

Yj) dP

=

∞∑
n=0

n∑
j=0

∫
τ=n

Yj dP =

∞∑
j=0

∞∑
n=j

∫
τ=n

Yj dP =

∞∑
j=0

∫
τ≥j

Yj dP

Since {τ ≥ j} = Ω \ {τ < j} ∈ Fj−1,∫
τ≥j

Yj dP =

∫
τ≥j

E(Yj |Fj−1) dP ≤ C P (τ ≥ j)

and thus

E(|Xτ |) ≤ E(
τ∑
j=0

Yj ≤ E(|X0|) + C
∞∑
P (τ ≥ j) = E(|X0|) + C P (τ) <∞

Moreover, if τ > n then
n∑
j=0

Yj ≤
τ∑
j=0

Yj

and thus ∫
τ>n
|Xn| dP ≤

∫
τ>n

τ∑
j=0

Yj dP.

Since E(
∑τ

j=0 Yj) < ∞ and {τ > n} ↓ ∅, it follows from the Lebesgue dominated convergence
theorem that

lim inf
n→∞

∫
τ>n
|Xn| dP ≤ lim inf

n→∞

∫
τ>n

τ∑
j=0

Yj dP = 0

Hence the theorem follows from Theorem (Optional Sampling).
Example (Wald’s identities) Let {ξk, k ≥} be i.i.d random variables with E(|ξk|) < ∞ and τ
is a stopping time with respect to Fn = σ(ξk, k ≤ n). If E(τ) <∞,

E(

τ∑
k=1

ξk) = E(ξ1)E(τ)
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If moreover E(|ξk|2) <∞, then

E|
τ∑
k=1

ξk − τ E(ξ1)|2 = V ξ1E(τ).

In fact,

Xn =

n∑
k=1

ξk − nE(ξ1)

is a martingale and

E(|Xn+1 −Xn||Fn) = E(|ξn+1 − Eξ1)|Fn) = E(|ξn+1 − E(ξ1)|) ≤ 2E(|ξ1|) <∞.

Thus, E(Xτ ) = E(X0) = 0 and the claimed identity holds.
Example (Wald’s fundamental identity) Let {ξk, k ≥} be i.i.d random variables with and τ
is a stopping time with respect to Fn = σ(ξk, k ≤ n). Define Sn =

∑n
k=1 ξk assume E(τ) < ∞

and |Sn| ≤ C, (τ > n, P − a.s.) (for example, τ = {n ≥ 0 : |Sn| ≥ a} for some a > 0)). Let
φ(t) = E(eξ1t) and for some t0 6= 0, φ(t0) exits and φ(t0) ≥ 1. Then,

E(et0Sτφ(t0)−τ ) = 1.

In fact, Xn = et0Snφ(t0)−n is martingale and

E(|Xn+1 −Xn||Fn) = XnE(|et0ξn+1φ(t0)−1 − 1||Fn) = XnE(|et0ξn+1φ(t0)−1 − 1|) <∞.

The claimed identity follows from E(X1) = 1.

4.3 Martingale Convergence

Theorem (Doob’s Maximal Inequality) Suppose that {Mn} is a submartingale. Then

P (max
k≤n

Mk ≥ λ) ≤ 1

λ
E(MnI{max

k≤n
Mk ≥ λ}).

Proof: Define the stopping time τ = min{n ≥ 0 : Mn ≥ λ} ∧ n. Then, by the optional sampling
theory,

E(Mn) ≥ E(Mτ ) = E(MτI{maxk≤nMk ≥ λ}) + E(MτI{maxk≤nMk < λ})

≥ λP (maxk≤nMk ≥ λ) + E(MnI{maxk≤nMk < λ).

As a consequence, if {Mn} is a martingale and p ≥ 1, applying Doobs maximal inequality to
the submartingale {|Mn|p} we obtain

P ( max
0≤n≤N

|Mn| ≥ λ) ≤ 1

λp
E(|MN |p) fooe p ≥ 1, (4.6)

which is a generalization of Chebyshev inequality.
Kolmogorov’s Inequality Let {ξk, k ≥} be i.i.d random variables with E(ξk) = 0 and E(|ξ1|2) <
∞. since Sn =

∑n
k=1 ξk is a martingale with respect to Fn = σ(ξk, k ≤ n),

P (max
k≤n
|Sk| ≥ ε) ≤

ES2
n

ε2
.
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For a < b let τ0 = 1 and

τ1 = min{n > 0;Xn ≤ a}, τ2 = min{n > τ1;Xn ≥ b}, · · ·

τ2n−1 = min{n > τ2n−2;Xn ≤ a}, τ2n = min{n > τ2n−1;Xn ≥ b}, · · ·

Let βn(a, b) = max{m : τ2m ≤ n} be the upcrossing number of [a, b] by the process {Xk, k ≥ 1}.
Theorem (The Martingale Convergence Theorem) If {Mn} is a submartingale such that
supnE(M+

n ) <∞, then
Mn →M a.s.,

where M is an integrable random variable.
Proof: First, since

E(M+
n ) ≤ E(|Mn|) = 2E(M+

n )− E(Mn) ≤ 2E(M+
n )− E(M1),

we have supn E(|Mn|) <∞. Suppose that

A = {lim supMn > lim inf Mn} and P (A) > 0.

The since

A = ∪a<b(lim supMn > b > a > lim inf Mn where a, b are rational numbers

for some rational numbers a, b

P ({lim supMn > b > a > lim inf Mn}) > 0 (4.7)

Let βn(a, b) be the number of upcrossings of (a, b) by the sequence M1, · · · ,Mn.

E(βn(a, b)) ≤ E((Mn − a)+

b− a
≤ E(M+

n ) + |a|
b− a

and thus

lim
n→∞

E(βn(a, b)) ≤ supn E(M+
n ) + |a|

b− a
which contradicts to assumption (4.7). Hence limn→∞Mn = M exists and by Fatou’ lemma

E|M | ≤ sup
n
E|Mn| <∞

Example 6 (revisited) Since E(|Mn|) = 1 and limn→∞Mn exists almost surely. By the law of

large number
∑n
k=1 Yk
n → 0 in probability, we have limn→∞Mn = 0, a.s..

Theorem (P.Levy) Let ξ be an integrable random variable and F∞ = σ(∪nFn). Then,

E(ξ|Fn)→ E(ξ|F∞) a.s. and in L1.

Proof: Let Xn = E(ξ|Fn). For a > 0 and b > 0∫
{|Xn|≥a}

|Xn| dP ≤
∫
{|Xn|≥a}

E(|ξ||Fn) dP =

∫
{|Xn|≥a}

|ξ| dP

=

∫
{{|Xn|≥a}∩{|ξ|≤b}}

|ξ| dP +

∫
{{|Xn|≥a}∩{|ξ|>b}}

|ξ| dP

≤ bP (|Xn| ≥ a) +

∫
{|ξ|≤b}

|ξ| dP

≤ b

a
E(|Xn|) +

∫
{|ξ|≤b}

|ξ| dP ≤ b

a
E(|ξ|) +

∫
{|ξ|≤b}

|ξ| dP
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Letting a→∞ and the b→∞ in this, we have

lim
a→∞

sup
n

∫
{|Xn|≥a}

|Xn| dP = 0,

i.e., {Xn} is uniformly integrable. Thus, from Martingale Convergence theorem there exists a
random variable X such that Xn = E(ξ|Fn) → X a.s and in L1. For the last assertion let m ≥ n
and A ∈ Fn. Then, ∫

A
Xm dP =

∫
A
Xn dP =

∫
A
E(ξ|Fn) dP =

∫
A
ξ dP.

Since {Xn} is uniformly integrable, E(IA|Xm −X|)→ 0 as m→∞ and∫
A
X dP =

∫
A
ξ dP

for all A ∈ Fn and thus for all A ∈ ∪nFn. Since E|X| <∞ and E|ξ| <∞ the left and right hand
side of the above inequalities define σ-additive measures on the algebra ∪nFn. By Caratheodory’s
theorem there exists the unique extension on these measures to F∞ = σ(∪nFn). Thus,∫

A
X dP =

∫
A
ξ dP =

∫
A
E(ξ|F∞) dP.

Since X is F∞-measurable, X = E(ξ|F∞).
Corollary (Doob Martingale) A {Mn} is uniformly integrable martingale if and only if there
exists an integrable random variable M such that Mn = E(X|Fn) for n ≥ 1.
Proof: Since {Mn} is uniformly integrable, supn E(|Mn|) < ∞ and Mn → M in L1(Ω, P ) as
n→∞. Since {Mn} is a martingale, for A ∈ Fm and n ≥ m,∫

A
E(Mn|Fm) dP =

∫
A
Mm dP

But, we have ∫
A
E(Mn|Fm) dP =

∫
A
Mn dP

Hence

|
∫
A

(Mm −M) dP | = |
∫
A

(Mn −M) dP | ≤
∫

Ω
|Mn −M | dP → 0

as n→∞ and ∫
A
Mm dP =

∫
A
M dP.

Corollary If (Mn,Fn) is submartingale, and for some p > 1 supn E(|Mn|) < ∞ then there exits
an integrable random variable M such that

Mn = E(M |Fn) and Mn →M in Lp.

Corollary If (Mn,Fn) is a martingale

Mn

〈M〉n
→ 0 P − a.s.
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Example 8 (revisited) Assume f is Lipschitz continuous,i.e. |f(x) − f(y)| ≤ L |x − y|. Then
|Xn| ≤ L. Note that F = B[0, 1]) = σ(∪nFn) there is F-measurable function g = g(x) such that
Xn → g a.s. and

Xn = E(g|Fn)

Thus, for B = [0, k2−n]

f(k2−n)− f(0) =

∫ k2−n

0
Xn dx =

∫ k2−n

0
g dx.

Since n and k are arbitrary, we obtain

f(x)− f(0) =

∫ x

0
g(s) ds,

i.e., f is absolutely continuous and d
dxf = g a.s.

4.4 Continuous time Martingale and Stochastic integral

Let {Xt, t ≥ 0} be a continuous time stochastic process on a probabilty space (Ω,F , P ) and
{Ft, t ≥ 0} be a family of sub-σ algebras with Fs ⊂ Ft for all t > s ≥ 0. A random variable
τ ≥ 0 is a Markov time with respect to the filteration Ft if for all t ≥ 0, the event {τ ≤ t} is Ft
measurable,i.e., the event is completely described by the information available up to time t. For
continuous time process it is not sufficient to require {τ = t} is Ft measurable for all t ≥ 0. If
τ1, τ2 are Markov times, so are τ1 + τ2, τ1 ∧ τ2 = min(τ1, τ2) and τ1 ∨ τ2 = max(τ1, τ2). Thus, τ ∧ t
is a Markov time. For example, let Ft = σ(Xs, s ≤ t) of a continuous process Xt. The exit time
from an open set A;

τA = inf{t : Xt /∈ A}

is a Markov process, i.e,

{τ > t} =
∞⋃
k=1

⋂
r∈Q, 0≤r≤t

{dist(Xr, A
c) ≥ 1

k
}.

In general if Xt is not continuous τA is not necessary a Markov time. Suppose t → Xt(ω) is
continuous from the right and has a limit from the left, i.e., Xt = lims↓t and Xt− = lims↑tXs exists
for all t ≥ 0. Let

Ft+ =
⋂
s>t

Fs

Then, Ft+ is a σ algebra, Xt is Ft+ and F t+ ⊂ Fs+ for t < s. Next, F̄t+ be the smallest σ algebra
containing every set in Ft+ and every set A in F with P (A) = 0, i.e, it consists of all events that
are P − a.s. equivalent to events in Ft+ . Then, for every Borel set B, the arrival time

τB =

{
inf{t ≥ 0 : Xt ∈ B}, Xt ∈ B for some t ≥ 0
∞, Xt /∈ B for all t ≥ 0,

is a Markov time with respect to F̄t+ .
Given a filtered probability space (Ω,F , (Ft)t≥0, P ), then a continuous-time stochastic process

(Xt)t≥0 is a martingale (submartingale) if
(a) Xt is Ft measurable for all t ≥ 0.
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(b) E(X+
t ) <∞.

(c) Xt = (≥)E(Xt|Fs) for all t ≥ s ≥ 0.
Both the martingale optional sampling and convergence theorems hold for continuous time, i.e.,

E(X0) ≤ E(Xτ∧t) ≤ E(Xt)

for all Markov times τ . Here, the inequalities for a submartingale and the equalities for a martingale.
If P (τ <∞) = 1 then P−a.s.

Xτ∧t → Xτ as t→∞.

Theorem (Optional Sampling) Let {Xt, t ≥ 0} be a martingale (submartingale) and τ is a
Markov time with respect to Ft. If P (τ <∞) and the random variables {X+

t∧τ , t ≥ 0} are uniformly
integrable, then E(x0) = (≤)E(Xτ ).
Corollary Let {Xt, t ≥ 0} is a martingale and τ is a Markov time with respect to Ft. If P (τ <∞)
and E(supt≥0 |Xt, t ≥ 0} <∞, then E(x0) = E(Xτ ).

We use these results to derive a number of important proprieties of the Brownian motion in
Chapter 7.
Example (Poisson Process) If {Nt, t ≥ 0} is a Poisson process with parameter λ, then

Nt − λ t, (Nt − λt)2 − λ t, e−θ Nt+λt (1−e−θ) (4.8)

are martingales with respect to Ft = σ(Ns, s ≤ t). Let a is a positive integer and τa = inf{t ≥ 0 :
Nt ≥ a} starting from N0 = 0. With the observation Nτa = a, we have

a = λE(τa), E((λ τa − a)2) = λE(τa) = a, E(e−βτa) = eθa =

(
λ

λ+ β

)a
(4.9)

where β = −λ (1− e−θ). The last equation is the Laplace transform of τa and it shows that τa has
a gamma distribution with parameters a and λ.
Example (Birth Processes) Let {Xt. t ≥ 0} be a pure birth process having the birth rate λ(i)
for i ≥ 0. If Xt = 0 then

Yt = Xt −
∫ t

0
λ(Xs) ds, Vt = eθXt+(1−eθ)

∫ t
0 λ(Xs) ds

are martingales with respect to Ft = σ(Xs, s ≤ t).
Lemma 2.2 Suppose Mt is almost surely continuous martingale with respect to (Ω,Ft, P ) and At
is a progressively measurable function, which is almost surely continuous and of bounded variation
in t. Then, under the assumption that sup0≤s≤t |Ms|Var[0,t]A(·, ω) is integrable,

MtAt −M0A0 −
∫ t

0
M(s) dA(s)

is a martingale.
Proof: The main step is to see why

E(MtAt −M0A0 −
∫ t

0
Ms dAs) = 0
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Then the same argument, repeated conditionally will prove the martingale property.

E(MtAt −M0A0) = lim
∑
j

E(MtjAtj −Mtj−1Atj−1)

= lim
∑
j

E(E((Mtj −Mtj−1)Atj−1 |Ftj−1) +Mtj (Atj −Atj−1))

= lim
∑
j

E(Mtj (Atj −Atj−1) = E

∫ t

0
Ms dAs.

where the assumption and the dominated convergence theorem. �
For

Mt = f(Xt)− f(X0)−
∫ t

0 Af(Xs) ds

At = e
−

∫ t
0
Af(Xs)
f(Xs)

ds

we have

f(Xt)e
−

∫ t
0
Af(Xs)
f(Xs)

ds
(4.10)

is a martingale if f is uniformly positive. In fact

MtAt −M0A0 −
∫ t

0
Ms dAs = f(Xt)At − f(X0)A0. (4.11)

4.5 Stochastic Integral with respect to Martingale Process

Let (Ω,F , P ) be the probability space and Ft be the right continuous increasing family of sub
σ algebras (i.e. Ft = ∩s>tFs). Let Mt is a right continuous square integrable martingale. The
process Xt is predictable if measurable with respect to the σ-algebra Ft− for each time t. Every
process that is left continuous is a predictable process. For every square integrable Ft adapted
process there exists a predictable Φ̃ ∈ L2 such that Φ̃ is a modification of Φ. For example, we may
take

Φ̃t(ω) = lim sup
h→0+

1

h

∫ t

t−h
Φs(ω) ds.

One can define the stochastic integral

Xt =

∫ t

0
HsdMs, (4.12)

where {Mt, t ≥ 0} is a square integrable martingale and {Ht, t ≥ 0} is a predictable process.
Definition Let L0 be the set of bounded adapted process such that

Ht = Hj on [tj , tj+1) and Hj is Ftj measurable,

with some partition P = {0 = t0 < t1 < · · · } of the interval [0, T ]. For Ht ∈ L0

Xt = I(Ht) =

k−1∑
j=0

Hj(Mtj+1 −Mtj ) +Htk(Mt −Mtk). (4.13)
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As the discrete time case, we define the quadratic variation of {Mt, t ≥ 0} by

E(〈M〉t − 〈M〉s|Fs) = E((Mt −Ms)
2|Fs),

then
|Mt|2 − 〈M〉t

is a martingale and 〈M〉t is naturally increasing predictable process. We can complete a space of
predictable process by the norm ∫ T

0
|Ht|2 d〈M〉t,

and the completion is called L2(〈M〉). Note that I is a linear operator on the subspace L0 of simple
predictable process of L2(〈M〉) and it follows from Theorem for the martingale transform that

|Xt|2 −
∫ t

0
|Hs|2 d〈M〉s

ia martingale and

〈X〉t =

∫ t

0
|Hs|2 d〈M〉s.

Proposition 1 The stochastic integral
∫ t

0 fs dMs for f ∈ L0 is a square integrable martingale and
satisfies

〈
∫ t

0 fs dMs〉t =
∫ t

0 f
2
s d〈M〉s

E[|
∫ t

0 fs dMs|2] = E[
∫ t

0 f
2
s d〈M〉s] = ||f ||2.

Proof: For t > s (without loss of generality) we assume that t, belong to the partition P .

E(|
∫ t

s
fσ dMσ|2|Fs) =

∑
i

E(E(f2
ti(Mti+1 −Mti)

2|Fti)|Fs)

+2
∑
k>`

E(E(ftkft`(Mtk+1
−Mtk)(Mt`+1

−Mt`)|Ft`)|Fs).

Here
E([f2

ti(Mti+1 −Mti)
2|Fti) = f2

tiE((Mti+1 −Mti)
2|Fti)

= f2
tiE(M2

ti+1
−M2

ti |Fti) = f2
tiE(〈M〉ti+1 − 〈M〉ti |Fti)

and

E(ftkft`(Mtk+1
−Mtk)(Mt`+1

−Mt`)|Ft`) = E(ftkft`E(Mtk+1
−Mtk |Ftk)(Mt`+1

−Mt`)|Ft`) = 0.

Thus,

E(|
∫ t

s
fσ dMσ|2|Fs) =

∑
i

E(f2
tiE[〈M〉ti+1 − 〈M〉ti |Fs) = E(

∫ t

s
|fσ|2 d〈M〉σ|Fs).

which implies the claim. �
Definition For H ∈ L2(〈M〉)∫ t

0
Hs dMs = lim Xn

t = lim

∫ t

0
Hn
s dMs
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where Hn
t ∈ L0 and ||Hn −H|| → 0 as n→∞. From Proposition 1

E[|Xn
T −Xm

T |2] = ||Hn −Hm||2

and by the martingale inequality

E( sup
0≤s≤T

|Xn
s −Xm

s |2) ≤ 4E(|Xn
T −Xm

T |2).

Since L0 is dense in L2(〈M〉) there exits a unique limit Xt of Xn
t in L2(〈M〉) and Xn

t , 0 ≤ t ≤ T
has a subsequence that converges uniformly a.s. to Xt (pathwise). Thus, the limit Yt, 0 ≤ t ≤ T
defines the stochastic integral

∫ t
0 fs dMs and is right continuous. That is, I is a bounded linear

operator on L0 and since L0 is dense in L2(〈M〉) the stochastic integral (4.12) is the extension of
(4.13) on L2(〈M〉).

|Xt|2 −
∫ t

0
|Hs|2 d〈M〉s

is again a martingale after the extension.
Remark (1) If Mt is continuous, then it is not necessary to assume that Ft is right continuous. If
we let Ft+ = ∩s>tFs. Then if Mt is an Ft continuous martingale, Mt is also an Ft+ martingale.
The corresponding natural increasing process 〈M〉t is Ft+ adapted, but since 〈M〉t is continuous
〈M〉t is Ft adapted. Hence M2

t − 〈M〉t is an Ft continuous martingale.
(2) If Mt is continuous, then it is not necessary to assume that Φt is predictable, and

∫
Φs dMs is

a continuous Ft martingale for Φt is a square integrable Ft adapted process.
(3) L2(〈M〉) is a Hilbert space with inner product

(f, g) = E(

∫ T

0
ftgt d〈M〉t).

If the original martingale Mt is almost surely continuous and so is Xt. This is obvious if Ht is
simple by (4.13) and follows from the Doob’s martingale inequality for general. That is,

P ( sup
0≤s≤T

|Xm
s −Xn

s | ≥ ε) ≤
1

ε2
||Hm −Hn||.

Choose a sequence nk such that

P ( sup
0≤s≤T

|Xm
s −Xn

s | ≥ 2−k) ≤ 2−k

and thus
∞∑
P ( sup

0≤s≤T
|Xnk+1

s −Xnk
s | ≥ 2−k) <∞.

By Borel-Cantelli lemma

P ( sup
0≤s≤T

|Xnk+1
s −Xnk

s | ≥ 2−k) for infinitely many k) = 0

So, for almost surely ω, there exists k ≥ k1(ω) such that for all k ≥ k1(ω)

sup
0≤s≤T

|Xnk+1
s −Xnk

s | ≤ 2−k.

Hence, limXt(ω) = limk→∞X
nk
t (ω) is continues.

Example Let Mt = Nt − t for Poisson process Nt. Then, Mt and |Mt|2 − t are martingales.

Xt =

∫ t

0
NsdMs =

∑
τj≤t

N((τj)
−)−

∫ t

0
N(s) ds.
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4.6 Generalized Ito’s differential rule

Let Xt = X0 +Mt +At where Mt ∈M2
c is a continuous (locally) square integrable martingale and

At is an continuous process of bounded variation. Then we have the Ito’s differential rule:
Theorem For f ∈ C1,2([0, T ]×Rd)

f(Xt)− f(X0) =

∫ t

0
ft(s,Xs) ds+

d∑
i=1

fxi(s,Xs)dX
i
s +

1

2

d∑
i,j=1

∫ t

0
fxi,xj (s,Xs) d〈M i,M j〉s

Or, equivalently (increment form)

df(t,Xt) = ft dt+ +fxi(Xt)dX
i
t +

1

2

d∑
i,j=1

∫ t

0
fxi,xj (Xt) d〈M i,M j〉t. (4.14)

Proof: For a positive integer n we define a stopping time τn by

τn = inf{t > 0 : |X0 +Mt| > n or |At| > n}

Then τn → ∞ as n → ∞ a.s.. Thus, it suffices to prove the formula for Xt∧τn and thus without
loss of generality we can assume that |X0 + Mt|, |At| are bounded and f, fxi , fxi,xj are bounded
and uniformly continuous.

Note that by the mean value theorem

f(Xt)−f(X0) =
n∑
k=0

d∑
i=0

fxi(Xtk)(Xtk+1
−Xtk)+

1

2

n∑
k=0

d∑
i=1

d∑
j=1

fxi,xj (ξi,j)(X
i
tk+1
−Xi

tk
)(Xj

tk+1
−Xj

tk
).

By the definition of the stochastic integral the first term of RHS converges to

d∑
i=1

∫ t

0
(fxi(Xs) dM

i
s + fxi(Xs) dA

i
s)

The second term is a linear combination of forms∑
k

g(ξk)(Mtk+1
−Mtk)(Ntk+1

−Ntk)

∑
k

g(ξk)(Mtk+1
−Mtk)(Atk+1

−Atk)

∑
k

g(ξk)(Atk+1
−Atk)(Ctk+1

− Ctk)

where Mt, Nt ∈Mc
2 and At, Ct are continuous process of bounded variation. Here

|
∑
k

g(ξk)(Mtk+1
−Mtk)(Atk+1

−Atk)| ≤ ‖g‖ sup
k
|Mtk+1

−Mtk |At → 0

as |P | → 0. In the following theorem it will be shown that the first term converges to
∫ t

0 g(Xs) d〈M,N〉s.
Lemma If |Ms| ≤ C for some C on [0, t], then

E[|Vn|2] ≤ 12C4 if Vn =

n∑
k=0

(Mtk+1
−Mtk)2.
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Proof: It is easy to see that

|Vn|2 =
n∑
k=0

(Mtk+1
−Mtk)4 + 2

n∑
k=1

(Vn − Vk−1)(Mtk+1
−Mtk)2

and

E[(Vn − Vk−1)|Ftk ] = E[
n∑
i=k

(Mti+1 −Mti)
2|Ftk ] = E[(Mt −Mtk)2|Ftk ] ≤ 4C2

Thus,

E[
n∑
k=1

(Vn − Vk−1)(Mtk+1
−Mtk)2] ≤ 4C2E[Vn] = 4C2E[M(t)2] ≤ 4C4.

Also,

E(
n∑
k=0

(Mtk+1
−Mtk)4) ≤ 4C2E(Vn) ≤ 4C4.�

Theorem Let Mt and Nt be bounded continuous martingale. For a bounded uniformly continuous
function g ∑

gk (Mtk+1
−Mtk)(Ntk+1

−Ntk)→
∫ t

0
g(Xs) d〈M,N〉s in L1(Ω).

where gk = g(Xtk + (1− θk)(Xtk+1
−Xtk) with θk ∈ [0, 1].

Proof: Let

I =
∑

g(Xtk) [(Mtk+1
−Mtk)(Ntk+1

−Ntk)− (〈M,N〉tk+1
− 〈M,N〉tk)]

J =
∑

(gk − g(Xtk))(Mtk+1
−Mtk)(Ntk+1

−Ntk)

K =
∑

g(Xtk)[(〈M,N〉tk+1
− 〈M,N〉tk)−

∫ t
0 g(Xs)d〈M,N〉s

We show that I, J, K → 0 as |P | → 0. Clearly E[|K|]→ 0 as |P | → 0. Let

Vt =
∑
tk+1≤t

(Mtk+1
−Mtk)2, Wt =

∑
tk+1≤t

(Ntk+1
−Ntk)2.

Since
|J | ≤ sup

k
|gk − g(Xtk)|(VtWt)

1/2

we have from Lemma

E|J | ≤ E[sup
k
|gk − g(Xtk)|2]1/2E[V 2

t ]1/4E[W 2
t ]1/4 ≤

√
12C2E[sup

k
|g(ξk)− g(Xtk)|2]1/2 → 0

as |P | → 0. For I let

Ii =

i−1∑
k=0

g(Xtk) [(Mtk+1
−Mtk)(Ntk+1

−Ntk)− (〈M,N〉tk+1
− 〈M,N〉tk)]
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Then (Ii,Fti) is a discrete-time martingale. Thus from the same arguments as in the proof of
Proposition 1

E[|I|2] =

n∑
k=0

E[|g(Xtk)|2 ((Mtk+1
−Mtk)(Ntk+1

−Ntk)− (〈M,N〉tk+1
− 〈M,N〉tk))2

and therefore

E[|I|2] ≤ 2‖g‖2
n∑
k=0

E[(Mtk+1
−Mtk)2(Ntk+1

−Ntk)2] + 2‖g‖2
n∑
k=0

E[(〈M,N〉tk+1
− 〈M,N〉tk)2].

Here ∑n
k=0 E[(Mtk+1

−Mtk)2(Ntk+1
−Ntk)2] ≤ E[supk (Mtk+1

−Mtk)2
∑

k (Ntk+1
−Ntk)2]

≤ E[sup
k

(Mtk+1
−Mtk)4]1/2E[|Wt|2]1/2 → 0

as |P | → 0. Since 〈M,N〉s, s ∈ [0, t] is bounded

n∑
k=0

E[(〈M,N〉tk+1
− 〈M,N〉tk)2] ≤ E[sup

k
|〈M,N〉tk+1

− 〈M,N〉tk |‖〈M,N〉‖t]→ 0

as |P | → 0. Thus E[|I|2]→ 0. �
Theorem (Ito) Suppose a continuous square integrable process Xt satisfies

dXt = b(Xt) dt+ σ(Xt)dBt.

Then,

f(xt) = f(X0) +

∫ t

0
∇f(Xs) · (b(Xs) ds+ σ(Xs)dBs) +

∫ t

0

1

2
ai,j(Xs)(

∂2

∂xi∂xj
f)(Xs) ds.

where a(x) = σtσ. Thus,

f(Xt)− f(X0)−
∫ t

0
Af(Xs) ds

is an Ft-martingale. where {Xt, t ≥ 0} is a Markov process and its generator A is given by

Af = bj(x)(
∂

∂xj
f)(x) +

1

2
ai,j(x)(

∂2

∂xi∂xj
f)(x).

with dom(A) = C2
0 (Rn).

Example

df(t, Bt) = (ft +
1

2
∆f)(Bt) dt+∇f(Bt) · dBt

and thus f(t, Bt) is a martingale if and if ft + 1
2∆f = 0.

Theorem (Levy) Let Xt be a continuous Ft adapted process. Then the followings are equivalent
(1) Xt is an Ft− Brownian motion.
(2) Xt is a square integrable martingale and 〈Xi, Xj〉t = δi,j t.
Proof: It suffices to prove that

E[ei (ξ,Xt−Xs)|Fs] = e−
1
2
|ξ|2(t−s).
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Applying the Ito’s formula for ei (ξ,Xt)

ei (ξ,Xt) − ei (ξ,Xs) =

∫ t

s
(iξ ei (ξ,Xσ), dXσ)− 1

2

∫ t

s
|ξ|2ei (ξ,Xσ) dσ.

Since Xt ∈Mc
2

E[

∫ t

s
(iξ ei (ξ,Xσ), dXσ)|Fs] = 0.

Multiplying the both sides of this by e−i (ξ,Xs), for A ∈ Fs

E[ei (ξ,Xt−Xs) χA]− P (A) = −1

2
|ξ|2

∫ t

s
E[ei (ξ,Xσ−Xs)χA] dσ.

Thus, we obtain

E[ei (ξ,Xt−Xs) χA] = P (A) e−
1
2
|ξ|2(t−s).�

4.7 Semimartingale

A stochastic process {Xt, t ≥ 0} is called a semimartingale if it can be decomposed as the sum of a
local martingale and an adapted finite-variation process. Semimartingales are ”good integrators”,
forming the largest class of processes with respect to which the Ito-integral can be defined. The class
of semimartingales is quite large (including, for example, all continuously differentiable processes,
Brownian motion and Poisson processes). Submartingales and supermartingales together represent
a subset of the semimartingales. As with ordinary calculus, integration by parts is an important
result in stochastic calculus. The integration by parts formula for the Ito- integral differs from the
standard result due to the inclusion of a quadratic covariation term. This term comes from the
fact that Ito-calculus deals with processes with non-zero quadratic variation, which only occurs for
infinite variation processes (such as Brownian motion). If X and Y are semimartingales then

XtYt = X0Y0 +

∫ t

0
Xs− dYs +

∫ t

0
Ys− dXs + 〈X,Y 〉t

where 〈X,Y 〉 is the quadratic covariance process. The result is similar to the integration by parts
theorem for the RiemannStieltjes integral but has an additional quadratic variation term.

Ito’s lemma is the version of the chain rule or change of variables formula which applies to the Ito
stochastic integral. It is one of the most powerful and frequently used theorems in stochastic calcu-
lus. For a continuous d-dimensional semimartingale Xt ∈ Rd and twice continuously differentiable
function f from Rd to R, it states that f(Xt) is a semimartingale and,

df(Xt) =
d∑
i=1

fi(Xt) dX
i
t +

1

2

d∑
i,j=1

fi,j(Xt) d〈Xi, Xj〉t.

This differs from the chain rule used in standard calculus due to the term involving the quadratic
covariation. The formula can be generalized to non-continuous semimartingales by adding a pure
jump term to ensure that the jumps of the left and right hand sides agree.
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4.8 Excises

Problem 1 Show (4.1)–(4.3).
Problem 2 If {ξk, k ≥ 1} is a sequence of independent random variables with E(ξk) = 1. Show that
Xn = Πn

k=1ξk is a martingale with respect to Fn = σ(ξk k ≤ n). Consider the case P (ξk = 0) =
P (ξk = 2) = 1

2 . Show that there is no an integrable random variable ξ such that Xn = E(ξ|Fn).
Problem 3 Let {ξk} be a sequence of independent random variables with E(ξk) = 0 and V (ξk) = σ2

k.
Define Sn =

∑n
k=1 ξk and Fn = σ(ξk, k ≤ n). Show the following generalization of Wald’s identities.

If E(
∑τ

k=1 |ξk|) <∞ then E(Sτ ) = 0. If E(
∑τ

k=1 |ξk|2) <∞ then E(S2
τ ) = E(

∑τ
k=1 σ

2
k).

Problem 4 Show (4.8) and (4.9).
Problem 5 Suppose {Xn} is a martingale satisfying some p > 1 E(|Xn|p) <∞. Show

(E(( max
0≤k≤n

|Xk|)p))
1
p ≤ p

p− 1
E(|Xn|p)

1
p .

Hint: E(|ξ|p) = p
∫∞

0 tp−1P (|ξ| > t) dt. Now, we use the maximal inequality for the submartingale
|Xn|.
Problem 6 Show (4.10)-(4.11).

Problem 7 Show that Xt = eλBt−
λ2t
2 satisfies dXt = λXt dBt. Find the generator of Xt.

5 Brownian Motion

In 1827 Robert Brown observed the complex and erratic motion of grains of pollen suspended in a
liquid. It was later discovered that such irregular motion comes from the extremely large number
of collisions of the suspended pollen grains with the molecules of the liquid. The position of a
particle at each time t ≥ 0 is a d dimensional random vector Bt. The mathematical definition of a
Brownian motion is the following: Definition
Definition (Brownian motion) A stochastic process Bt, t ≥ 0 is called a Brownian motion if it
satisfies the following conditions:
i) For all 0 ≥ t1 < · · · < tn the increments Btn − Btn−1 , · · ·Bt2 − Bt1 are independent random
variables.
ii) If 0 ≤ s < t, the increment Bt −Bs has the normal distribution N(0, t− s).
Theorem (Continuous Process) If Xt is a stochastic process on (Ω,F , P ) satisfying

E(|Xt −Xs|α) ≤ C|t− s|1+β

for some positive constants α, β and C, then if necessary, Xt, t ≥ 0 can be modified for each t on
a set of measure zero, to obtain an equivalent version that is almost surely continuous.

For the Brownian Motion, from (ii) an elementary calculation yields

E|Bt −Bs|4 = 3|t− s|2

so that Theorem with α = 3, β = 1 and C = 3 applies.
Remark (1) With probability 1 Brownian paths satisfy a Holder condition with any exponent
less than 1

2 . It is not hard to see that they do not satisfy a Holder condition with exponent 1
2 .

The random variables (Bt −Bs)/
√
|t− s| have standard normal distributions for any interval [s, t]

and they are independent for disjoint intervals. We can find as many disjoint intervals as we wish
and therefore dominate the Holder constant from below by the supremum of absolute values of an
arbitrary number of independent Gaussians.
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(2) The mapping ω → Bt(ω) ∈ C([0, 1);R) induces a probability measure PB which is called the
Wiener measure, on the space of continuous functions C = C([0; 1);R) equipped with its Borel-
field B(C), generated by open balls in C. Then we can take as canonical probability space for the
Brownian motion the space (C,B(C), PB). In this canonical space, the random variables are the
evaluation maps: Xt(ω) = ω(t).

First, we will show that
∑n

k=1 |∆Bk|2, ∆Bk = Btk − Btk−1
converges in mean square to the

length of the interval as the length of the subdivision tends to zero;

E((
∑n

k=1 |∆Bk|2 − t)2) =
∑

k,`(|∆Bk|2 −∆tk)(|∆B`|2 −∆t`)

=
n∑
k=1

(∆Bk − tk)4 =
∑
k

3(∆tk)
2 − 2(∆tk)

2 + (∆tk)
2 =

n∑
k

2(∆tk)
2 ≤ 2tmax

k
|∆tk| → 0

On the other hand, the total variation, defined by V = sup
∑n

k=1 |∆Bk| over all partition 0 = t0 <
t1 < · · · < tn = t, is infinite with probability one. In fact, using the continuity of the trajectories
of the Brownian motion, we have

n∑
k=1

|∆Bk|2 ≤ supk|∆Bk|
n∑
k=1

|∆Bk| ≤ V supk|∆Bk| → 0

if V <∞, which contradicts the fact that
∑n

k=1 |∆Bk|2 converges in mean square to t.

5.1 Brownian motion and Martingale

If {Bt, t ≥ 0} is a Brownian motion and Ft is the filtration generated by Bt, then, the processes

Bt, |Bt|2 − t and eλBt−
λ2

2
t are martingales. In fact

E(eλBt−
λ2

2
t|Fs) = E(eλ(Bt−Bs)−λ

2

2
(t−s)eλBs−

λ2

2
s|Fs) = E(eλ(Bt−Bs)−λ

2

2
(t−s))eλBs−

λ2

2
s = eλBs−

λ2

2
s

Consider the stopping time τa = inf{t ≥ 0 : Bt = a} for a > 0. Since the process Mt = eλBt−
λ2

2
t is

a martingale, E(Mt) = E(M0) = 1. By the Optional Stopping theorem we obtain E(Mτa∧N ) = 1
for all N ≥ 1. Note that

Mτa∧N = eλBτa∧N−
λ2

2
τa∧N ≤ eλa.

On the other hand,

lim
N→∞

Mτa∧N = Mτa if τa <∞, lim
N→∞

Mτa∧N = 0 if τa =∞,

and the dominated convergence theorem implies E(I{τa <∞}Mτa) = 1, that is,

E(I{τa <∞}e−
λ2

2
τa) = e−λa.

Letting λ→ 0+, we obtain P (τa <∞) = 1 and consequently,

E(e−
λ2

2
τa) = e−λa (5.1)

With the change of variables λ2

2 = α, we have

E(e−ατa) = e−
√

2αa. (5.2)
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From this expression we can compute the distribution function of the random variable τa;

P (τa ≤ t) =

∫ t

0

ae−a
2/2s

√
2πs3

ds.

On the other hand, the expectation of τa can be obtained by computing the derivative of (5.2) with
respect to the variable a:

E(τae
−ατa) =

ae−2
√
αa

√
2α

.

and letting α→ 0+ we obtain P (τa <∞) = 1.
(3) One can use the Martingale inequality in order to estimate the probability P (sups≤t |Bs| ≥ `).
For A > 0, by Doob’s inequality

P (sup
s≤t

eλBs−
λ2

2
s ≥ A) ≤ 1

A
.

and thus
P (sups≤tBs ≥ `) ≤ P (sups≤t |Bs − λs

2 | ≥ `−
λ
2 t)

= P (sup
s≤t
|λBs −

λ2s

2
| ≥ λ`− λ2

2
t) ≤ eλ`−

λ2

2
t

Optimizing over λ > 0 we obtain

P (sup
s≤t

Bs ≥ `) ≤ e−
`2

2t

and by symmetry

P (sup
s≤t
|Bs| ≥ `) ≤ 2e−

`2

2t

The estimate is not too bad because by reflection principle

P (sup
s≤t
|Bs| ≥ `) ≥ 2P (Bt ≥ `) =

√
2

2πt

∫ ∞
`

e−
x2

2t dx =

√
2

π

∫ ∞
√̀
t

e−
y2

2 dy

and thus
lim
t→∞

P (τ` ≤ t) = 1.

In particular, the one-dimensional Brownian motion starting from 0 will get up to any level ` at
some time.
Theorem (Levy theorem) If P is a measure on (C[0, 1],B, P ) such that P (X0 = 0) = 1 and the
the functions Xt and |Xt|2− t are martingales with respect to (C[0, T ],Bt, P ) then P is the Wiener
measure.
Proof: The proof is based on the observation that a Gaussian distribution is determined by two
moments. But that the distribution is Gaussian is a consequence of the fact that the paths are
almost surely continuous and not part of our assumptions. The actual proof is carried out by
establishing that for each real number λ

Xλ(t) = eλXt−
λ2

2
t (5.3)

is a martingale with respect to (C[0;T ];Bt, P ). Once this is established it is elementary to compute

E(eλ (Xt−Xs)|Bs) = e
λ2

2
(t−s) (5.4)
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which shows that we have a Gaussian process with independent increments with two matching
moments (0, t−s). The proof of (5.3) is more or less the same as proving the central limit theorem.
In order to prove (5.4) we can assume with out loss of generality that s = 0 and will show that

E(eλXt−
λ2

2
t) = 1. (5.5)

To this end let us define successively τ0,ε = 0 and

τk+1,ε = min(inf{s ≥ τk,ε : |Xs −Xτk,ε | ≥ ε}, t, τk,ε + ε).

Then each τk,ε is a stopping time and eventually τk,ε = t by continuity of paths. The continuity of
paths also guarantees that |Xτk+1,ε

−Xτk,ε | ≤ ε. We have

Xt =
∑
k≥0

(Xτk+1,ε
−Xτk,ε), t =

∑
k≥0

(τk+1,ε − τk,ε).

To establish (5.5) we calculate the left hand side as

lim
n→∞

E(e
∑

0≤k≤n λ (Xτk+1,ε
−Xτk,ε )−

λ2

2
(τk+1,ε−τk,ε))

and show that it is equal to 1. Let us consider the σ-algebra Fk = Bτk,ε and let

qk(ω) = E(eλ (Xτk+1,ε
−Xτk,ε )−(λ

2

2
+δ)(τk+1,ε−τk,ε)|Fk)

where δ = δ(ε, λ) is to be chosen later such that 0 ≤ δ(ε, λ) ≤ 1 and δ(ε, λ)→ 0 as ε→ 0+ for every
fixed λ. If z and τ are random variables bounded by ε such that

E(z) = E(z2 − τ) = 0,

then for any 0 ≤ δ ≤ 1

E(eλz−(λ
2

2
+δ)τ ) ≤ E(1+(λz−(

λ2

2
+δ)τ)+

1

2
(λz−(

λ2

2
+δ)τ)2 +Cλ(|z|3 +λ3) ≤ E(1−δτ+Cλετ) ≤ 1

provided that δ = Cλε. Clearly there is a choice of δ(ε, λ) → 0 as ε → 0+ such that qk(ω) ≤ 1 for
every k and almost all ω. In particular, by induction

E(e
∑

0≤k≤n λ (Xτk+1,ε
−Xτk,ε )−(λ

2

2
+δ)(τk+1,ε−τk,ε)) ≤ 1

for every n and by Fatou’s lemma

E(eλ(Xt−X0)−(λ
2

2
+δ)t) ≤ 1.

Since ε > 0 is arbitrary we have proved one half of (5.5). To prove the other half, we note that
Xλ(t) is a submartingale and from Doob’s martingale inequality we can get a tail estimate

P ( sup
0≤s≤t

|Xt −X0| ≥ `) ≤ 2 e−
`2

2t .

Since this allows us to use the dominated convergence theorem and establish

E(e
∑

0≤k≤n λ (Xτk+1,ε
−Xτk,ε )−(λ

2

2
−δ)(τk+1,ε−τk,ε)) ≥ 1.�
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5.2 Random walks and Brownian Motion

Let ξk be a sequence of independent identically distributed random variables with mean 0 and
variance 1 The partial sums Sk are defined by S0 = 0 and Sk = ξ1 + · · · + ξk for 1 ≤ k ≤ n. We
define stochastic processes Xn(t), t ∈ [01] by

Xn(
k

n
) =

Sk√
n

for 0 ≤ k ≤ n and for t ∈ [k−1
n , kn ]

Xn(t) = (nt− k + 1)X(
k

n
) + (k − nt)Xn(

k − 1

n
).

Let Pn denote the distribution of the process Xn(t, ω) on C[0, 1] and P the distribution of Brownian
Motion. We want to explore the sense in which limn→∞ Pn = P
Lemma For any finite collection 0 < t1 < · · · < tm ≤ 1 of m sample points, the joint distribution
of (X(t1), · · ·X(tm)) under Pn converges, as n→∞, to the corresponding distribution under P .
Proof: We are dealing here basically with the central limit theorem for sums of independent random
variables. Let us define kin = [nti] and the increments

ξin =
Skin − Ski−1

n√
n

for i = 1, · · ·m. For each n, ξin are m mutually independent random variables and their distributions
converge as n → ∞ to Gaussians with 0 means and variances ti − ti−1, respectively. This is of
course the same distribution for these increments under Brownian Motion. The interpolation is of
no consequence, because the difference between the end points is exactly some ξi√

n
. So it does not

really matter if in the definition of Xn(t) we take kn = [nt] or kn = [nt] + 1 or take the interpolated
value. We can state this convergence in the form

lim
n→∞

E(f(Xn(t1), Xn(t2), · · ·Xn(tm))) = E(f(Bt1 , · · · , Btm)),

for every m, any sample points (t1, · · · tm) and any bounded continuous function f on Rm.
Equivalently, for a simple random walk

p
(n+1)
k =

1

2
p

(n)
k−1 +

1

2
p

(n)
k+1,

or
p

(n+1)
k − p(n)

k

∆t
=

1

2

p
(n)
k−1 − 2p

(n)
k + 1

2p
(n)
k+1

∆x2
,

where ∆t = δx2. Letting ∆t→ 0 we obtain

∂

∂t
p(t, x) =

1

2

∂2

∂x2
p(t, x).

5.3 Stochastic Integral with respect to Brownian motion

Since |Bt|2 − t is a martingale, we have 〈B〉t = t and thus L(0, T )(〈B〉) = L2(0, T ). For a deter-
ministic f(t) ∈ L2(0, T ) ∫ t

0
f(s)dBs = lim

∆t→0=

∑
j

fj(Btj+1 −Btj )
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defines the Wienner integral. Since∑
j

(fj+1Btj+1 − fjBtj ) =
∑
j

fj(Btj+1 −Btj ) +
∑
j

(fj+1 − fj)Btj+1 ,

for f ∈ BV (0, T ) ∫ t

0
f(s)dBs = f(t)Bt − f(0)B0 −

∫ t

0
Bs df(s).

The Ito stochastic integral ∫ t

0
fs dBs = lim

|P |→0

∑
j

fnj (Btj+1−Btj )

is defined for ft satisfying
(a) f is adapted and measurable (the mapping (t, ω) → ft(ω) is measurable on the product space
[0, T ]× Ω with respect to the product σ-algebra B[0, T ]×F).

(b) E(
∫ T

0 |ft|
2 dt) <∞.

One can extend the Ito stochastic integral replacing property (b) by the weaker assumption:
(b′) P (

∫ t
0 |ft|

2 <∞) = 1.
We denote by La,T the space of processes that verify properties (a) and (b′). Stochastic integral is
extended to the space La,T by means of a localization argument. Suppose that u belongs to La,T .
For each n ≥ 1 we define the stopping time

τn = inf{t ≥ 0 :

∫ t

0
|fs|2 ds ≥ n}

where, by convention, n = T if
∫ T

0 |fs|
2 ds < n. In this way we obtain a nondecreasing sequence of

stopping times such that τn ↑ T . Furthermore,

t < τn ⇔
∫ t

0
|fs|2 ds < n

Set f
(n)
t = ftI[0,τn](t) and then f (n) ∈ L2

a,T . For m ≥ n, on the set {t ≤ τn}∫ t

0
u(m)
s dBs =

∫ t

0
u(n)
s dBs,

since ∫ t

0
u(n)
s dBs =

∫ t

0
u(m)
s I[0,τn] dBs =

∫ t∧τn

0
u(m)
s dBs.

As a consequence, there exists an adapted and continuous process denoted by
∫ t

0 fs dBs such that
for any n ≥ 1 and t ≤ τn ∫ t

0
f (n)
s dBs =

∫ t

0
fs dBs.

The stochastic integral of processes in the space La,T is linear and has continuous trajectories.
However, it may have infinite expectation and variance. Instead of the isometry property, there is
a continuity property in probability by the proposition:
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Proposition 4 Suppose that f ∈ La,T . For all K, δ > 0 we have:

P (|
∫ T

0
fs dBs| ≥ K) ≤ P (

∫ T

0
|fs|2 ds ≥ δ) +

δ

K2

Proof: Consider the stopping time defined by

τ = inf{t ≥ 0 :

∫ t

0
|fs|2 ds ≥ δ}

Then, we have

P (|
∫ T

0
fs dBs| ≥ K) ≤ P (

∫ T

0
|fs|2 ds ≥ δ) + P ({|

∫ T

0
fs dBs| ≥ K|} ∩ {

∫ T

0
|fs|2 ds ≤ δ})

where

P ({|
∫ T

0 fs dBs| ≥ K|} ∩ {
∫ T

0 |fs|
2 ds ≤ δ}) = P ({|

∫ T
0 fs dBs| ≥ K|} ∩ {τ = T})

= P ({|
∫ τ

0 fs dBs| ≥ K|} ∩ {τ = T}) ≤ 1
K2E(|

∫ τ
0 f

2
s dBs|2) 1

K2E(
∫ τ

0 |fs|
2 ds) ≤ δ

K2 .�

As a consequence of the above proposition, if f (n) is a sequence of processes in the space La,T
which converges to f ∈ La,T 2 in probability:

P (

∫ T

0
|f (n)
s − fs|2 ds > ε)→ 0 as n→∞

for all ε > 0, then ∫ T

0
f (n)
s dBs →

∫ T

0
fs dBs in probability.

Examples (Ito’s stochastic integral) Since∑
j

Btj (Btj+1 −Btj ) =
∑
j

1

2
(|Btj+1 |2 − |Btj |2 + |Btj+1 −Btj |2)

→ 1

2
(|Bt|2 − |B0|2)− 1

2
t.

we have ∫ t

0
Bs dBs =

1

2
(|Bt|2 − |B0|2)− t

2
.

The Stratonovich integral ∫ T

0
Xt ◦ dBt : Ω→ R

is defined to be the limit in probability of

k−1∑
i=0

Xti+1 +Xti

2
(Bti+1 −Bti)

as the mesh of the partition P = {0 = t0 < t1 < · · · < tk = T} of [0, T ] tends to 0.
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Examples (Stratonovich’s stochastic integral) Since∑
j

Btj+1 +Btj
2

(Btj+1 −Btj ) =
∑
j

1

2
(|Btj+1 |−|Btj |2) =

1

2
(|Bt|2 − |B0|2),

we have ∫ t

0
Bs ◦ dBs =

1

2
(|Bt|2 − |B0|2).

Conversion between Ito and Stratonovich integrals may be performed using the formula∫ T

0
f(Bt) ◦ dBt =

1

2

∫ T

0
f ′(Bt) dt+

∫ T

0
f(Bt) dBt, (5.6)

where f is a continuously differentiable function and the last integral is an Ito integral. Stratonovich
integrals are defined such that the chain rule of ordinary calculus holds, i.e.,

f(Xt)− f(X0) =

∫ t

0
f ′(Xs) ◦ dXs.

5.4 Excises

Problem 1 Show (5.6)
Problem 2 Let Bt be a two-dimensional Brownian motion. Given ρ > 0 , compute P (|Bt| < ρ).
Problem 3 Compute the mean and covariance of the geometric Brownian motion. Is it a Gaussian
process?
Problem 4 Let Bt be a Brownian motion. Find the law of Bt conditioned by Bt1 , Bt2 , and (Bt1 ;Bt2)
assuming t1 < t < t2.
Problem 5 Check if the following processes are martingales,

eλBt−
λ2t
2 , et/2 cos(Bt), (Bt + t)e−Bt−

t
2 , B1(t)B2(t)B3(t)

where B1, B2 and B3 are independent Brownian motions.

6 Diffusion Process

When we model a stochastic process in the continuous time it is almost impossible to specify in
some reasonable manner a consistent set of finite dimensional distributions. The one exception is
the family of Gaussian processes with specified means and covariances. It is much more natural
and profitable to take an evolutionary approach. For simplicity let us take the one dimensional
case where we are trying to define a real valued stochastic process with continuous trajectories.
The space C[0, T ] is the space on which we wish to construct the measure P . We have the σ-fields
Ft = σ(Xs, 0 ≤ s ≤ i) defined for t ≤ T . The total σ-field F = FT . We try to specify the
measure P by specifying approximately the conditional distributions P [Xt+h −Xt ∈ A|Ft]. These
distributions are nearly degenerate and and their mean and variance are specified as

E(Xt+h −Xt|Ft) = h b(t, ω) + o(h)

E(|Xt+h −Xt|2|Ft) = h a(t, ω) + o(h),
(6.1)

where for each t ≤ T the drift b(t, ω) and the variance a(t, ω) are Ft-measurable functions. Since
we insist on continuity of paths, this will force the distributions to be nearly Gaussian and no
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additional specification should be necessary. Equations (6.1) are infinitesimal differential relations
and the integrated forms are precise mathematical statements. We will discuss the approach by K.
Ito that realizes the increments Xt+h −Xt as

Xt+h −Xt ∼ b(t,Xt)h+
√
a(t,Xt)(Bt+h −Bt)

and as h→ 0 Xt defines a solution to the stochastic differential equation

Xt = X0 +

∫ t

0
b(s,Xs) ds+

∫ t

0

√
a(s,Xs)dBt

We need some definitions.
Definition (Progressively measurable) We say that a function f : [0, T ] × Ω → R is progres-
sively measurable if, for every t ∈ [0, T ] the restriction of f to [0, t]×Ω is a measurable function of
t and ω on ([0, t]× Ω,B[0, t]×Ft).

The condition is somewhat stronger than just demanding that for each t, f(t, ω) is Ft is mea-
surable. The following facts hold.
(1) If f(t, x) is measurable function of t and x, then f(t,Xt(ω)) is progressively measurable.
(2) If f(t, ω) is either left continuous (or right continuous) as function of t for every ω and if in
addition f(t, ω) is Ft measurable for every t, then f is progressively measurable.
(3) There is a sub σ-field Σ ⊂ B[0, T ] × F such that progressive measurability is just measurabil-
ity with respect to Σ. In particular standard operations performed on progressively measurable
functions yield progressively measurable functions.

We shall always assume that the functions b(t, ω) and a(t, ω) be progressively measurable. Let
us suppose in addition that they are bounded functions. The boundedness will be relaxed at a later
stage. We reformulate conditions (6.1) as

M1(t) = Xt −X0 −
∫ t

0
b(s, ω) ds, and M2(t) = M1(t)2 −

∫ t

0
a(s, ω) ds

are martingales with respect to (Ω,Ft, P ). We can define a Diffusion Process corresponding to a, b
as a measure P on (Ω,F) such that relative to (Ω,Ft, P ) M1(t) and M2(t) are martingales. If in
addition we are given a probability measure µ as the initial distribution, i.e. µ(A) = P (X0 ∈ A)
then we can expect P to be determined by a, b and µ. We saw already that if a a = 1 and b = 0,
with µ = δ0, we get the standard Brownian Motion Bt. If a = a(t,Xt) and b = b(t,Xt), we expect P
to be a Markov Process, because the infinitesimal parameters depend only on the current position
and not on the past history. If there is no explicit dependence on time, then the Markov Process
can be expected to have stationary transition probabilities. Finally if a(t, ω) = a(t) is purely a
function of t and b(t, ω) = b1(t) +

∫ t
0 c(s)Xs ds, then one expects P to be Gaussian, if µ is so.

Since Xt are continuous we can establish that

Zλ(t) = eλM1(t)−λ
2

2

∫ t
0 a(s,ω) ds = eλ(Xt−X0−

∫ t
0 b(s,ω) ds−λ

2

2

∫ t
0 a(s,ω) ds

is a martingale with respect to (Ω,Ft, P ) for every real λ. We can also take for our definition of
a Diffusion Process corresponding to a, b the condition that Zλ(t) be a martingale with respect
to (Ω,Ft, P ) for every λ. If we do that we did not have to assume that the paths were almost
surely continuous. (Ω,Ft, P ) could be any space supporting a stochastic process Xt such that the
martingale property holds for Zλ(t). If C is an upper bound for a, it is easy to see that

E(eλ(M1(t)−M1(s))) ≤ e
Cλ2

2 .
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The lemma of Garsia-Rodemich-Rumsey will guarantee that the paths can be chosen to be contin-
uous.

In general, Let (Ω,F , P ) be a probability space. Let T be the interval [0, T ] for some finite T or
the infinite interval [0,∞) F be sub σ-algebras such that Fs ⊂ Ft for s < t. We can assume with
out loss of generality that F =

⋃
t∈T Ft. Let a stochastic process Xt with values in Rn be given.

Assume that it is progressively measurable with respect to (Ω,Ft). We can easily generalize the
ideas described in the above to diffusion processes with values in Rn. Given a positive semidefinite
n× n matrix a = ai,j and an n-vector b = bj , we define the operator

(La,bf)(x) =
1

2

∑
i,j

ai,j
∂2

∂xi∂xj
f +

∑
j

bj
∂

∂xj
f.

If a = ai,j(t, ω) and b = bj(t, ω) are progressively measurable functions, we define

(Lt,ωf)(x) = (La(t,ω),b(t,ω)f)(x)

Theorem 2 (Diffusion Process) The following definitions are equivalent. Xt is a diffusion
process corresponding to bounded progressively measurable functions a(t, ω), b(t, ω) with values in
the space of symmetric positive semidefinite n× n matrices, and n-vectors if
(1) Xt has an almost surely continuous version and

Y (t) = Xt −X0 −
∫ t

0
b(s, ω) ds, Zi,j(t) = Yi(t, ω)Yj(t, ω)−

∫ t

0
ai,j(s, ω) ds

are (Ω,Ft, P ) martingales.
(2) For every λ ∈ Rn

Zλ(t, ω) = e(λ,Y (t,ω))− 1
2

∫ t
0 (λ,a(s,ω)λ) ds is an (Ω,Ft, P ) martingale.

(3) For every λ ∈ Rn

Xλ(t, ω) = ei(λ,Y (t,ω))+ 1
2

∫ t
0 (λ,a(s,ω)λ) ds is an (Ω,Ft, P ) martingale.

(4) For every smooth bounded function f on Rn with at least two bounded continuous derivatives

f(Xt)− f(X0)−
∫ t

0
(Ls,ωf(Xs)) ds is an (Ω,Ft, P ) martingale.

(5) For every smooth bounded function φ on T × Rn with at least two bounded continuous x
derivatives and one bounded continuous t derivative

φ(t,Xt)− φ(0, X0)−
∫ t

0
(
∂

∂t
+ Ls,ω)φ(s,Xs)) ds is an (Ω,Ft, P ) martingale.

(6) For every smooth bounded function φ on T × Rn with at least two bounded continuous x
derivatives and one bounded continuous t derivative

exp

(
φ(t,Xt)− φ(0, X0)−

∫ t

0
(
∂

∂t
+ Ls,ωφ(s,Xs)) ds−

1

2

∫ t

0
(∇xφ(s,Xs), a(s, ω)∇xφ(s,Xs)) ds

)
is an (Ω,Ft, P ) martingale.
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(7) Same as (6) except that φ is replaced by ψ of the form ψ(t, x) = (λ, x) + φ(t, x) where is φ as
in (6) and λ ∈ Rn is arbitrary.

Under any one of the above definitions, Y (t, ω) has an almost surely continuous version satisfying

P ( sup
0≤s≤t

|Y (s, ω)− Y (0, ω)| ≥ `) ≤ 2n e−
`2

Ct .

for some constant C depending only on the dimension n and the upper bound for a.
Proof: (3) Since

dZλ(t) = ((λ, dYt)−
1

2
(λ, a λ) dt)Zλ(t) +

1

2
(λ, a λ)Zλ(t) dt = (λ, dYt)Zλ(t),

we have

Zλ(t)− Zλ(s) =

∫ t

s
Zλ(σ)(λ, dYσ)

and thus Zt ia a martingale.
(4) Let us apply the above lemma with Mt = Xλ(t) and

At = e
∫ t
0 i(λ,bs)−

1
2

(λ,as λ) ds

Then a simple computation yields

MtAt −M0A0 −
∫ t

0
MsdAs = eλ(Xt −X0)− 1−

∫ t

0
(Ls,ωeλ)(Xs −X0) ds,

where eλ(x) = ei(λ,x). Multiplying this by eλ(X0), which is essentially a constant, we conclude that

eλ(Xt)− eλ(X0)−
∫ t

0
(Ls,ωeλ)(Xs) ds

is a martingale. That is,

E(ei(λ,Xt−Xs |Fs) =

∫ t

s
E((−i(λ, b(σ)) + (λ, a(σ)λ))ei(λ,Xσ−Xs)|Fs) dσ.

If b and a are deterministic

E(ei(λ,Xt−Xs)|Fs) = e−
∫ t
s i(λ,b(σ))+(λ,a(σ)λ) dσ

and Xt is a Gaussian process if X0 is so.
(5) Note that

E(φ(t,Xt)− φ(s,Xs)|Fs) = E(φ(t,Xt)− φ(t,Xs)|Fs) + E(φ(t,Xs)− φ(s,Xs)|Fs)

= E(

∫ t

s
Lσ,ωφ(σ,Xσ) dσ|Fs) +

∫ t

s

∂

∂t
φ(σ,Xs) dσ|Fs)

= E(

∫ t

s
(
∂

∂t
+ Lσ,ω)φ(σ,Xσ) dσ|Fs) + J
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where

J = E(

∫ t

s
Lσ,ω(φ(t,X − σ)− φ(σ,Xσ) dσ|Ft) +

∫ t

s
(
∂

∂t
φ(σ,Xs)− (

∂

∂t
φ(σ,Xσ) dσ|Fs)

= E(

∫ t

s

∫ t

u
(
∂

∂t
φ(v,Xu)Lu,ωφ(v, xu) dudv|Fs)− E(

∫ t

s

∫ u

s
(Lv,ω

∂

∂t
φ(u,Xv) dudv|Fs)

= E(

∫ ∫
s≤u≤v≤t

Lu,ω
∂

∂t
φ(v,Xu) dudv −

∫ ∫
s≤v≤u≤t

(Lv,ω
∂

∂t
φ(u,Xv) dudv|Fs) = 0

where we used the fact that the last two integrals are symmetric with respect to (u, v).

6.1 Excises

Problem 1 Show that

Mt = u(t,Xt)− u(0, X0)−
∫ t

0
(
∂

∂t
+ L)u(s,Xs) ds

is a Ft martingale. If we assume

∂u

∂t
+ Lu(t, x) = 0, u(T, x) = f(x)

then show that u(t, x) = Et,x(f(XT )) = E(f(XT )|Xt = x).
Problem 2 Show that

Mt = e−
∫ t
0 q(Xs) dsu(t,Xt)− u(0, X0)−

∫ t

0
e−

∫ s
0 q(Xσ) dσ(

∂

∂t
+ L − q(Xs))u(s,Xs)) ds

is a Ft martingale. If we assume

∂u

∂t
+ Lu(t, x)− q(x)u(t, x) = 0, u(T, x) = f(x)

then show that u(t, x) = Et,x(e−
∫ T
t q(Xs) dsf(XT )) (Feynman-Kac formula).

Problem 3 Let

Xt = er t+σ Bt−
σ2t
2

Show that
dXt = rXt dt+ σXt dBt

and

Lf = rx f ′ +
σ2x2

2
f ′′.

If
u(t, x) = Et,x(e−r(T−t)f(XT )),

then show that u satisfies Black-Scholes equation

∂u

∂t
+ rx

∂u

∂x
+
σ2x2

2

∂2u

∂x2
− r u = 0, u(T, x) = max(0,K − x) = f(x).

(for the European call option)
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7 Stochastic Differential equation

A stochastic differential equation models physical processes driven by random forces and random
rate change and uncertainty in models and initial conditions. It has a wide class of applications
in multidsplined sciences and engineering and provides a mathematical tool to analyze concrete
stochastic dynamics and apply and develop probabilistic methods.

For example, consider the population growth mode

dN

dt
= a(t)N(t) + f(t), N(0) = N0, (7.1)

where N(t) is the size of population at time t, a(t) is the growth rate and f(t) is the generation
rate of the population at time t. We introduce the rand environmental effects through;

a(t) = r(t) + ”noise”, f(t) = F (t) + ”noise”

and random initial value N0. In different applications (7.1) can be used to model the chemical
concentration and the mathematical finance for example. We will solve this using the solution to
the Ito’s stochastic differential equation.

Consider the discrete dynamics for Xk, k ≥ 0

Xk+1 = Xk + b(Xk)Deltat+ σ(Xk)wk, X0 = x (7.2)

where b(x) is the drift, σ(x) is the variance, and wk is independent, identically distributed Gaussian
random variables with N(0,

√
t). Equivalently, we have

Xn = x+

n∑
k=1

b(Xk−1)∆t+

n∑
0

σ(Xk)wk

We will analyze the limit as the time-stepsize ∆ → 0, introducing the stochastic integral for the
second sum and develop the solution to the diffusion process.

First, we establish the existence of the strong solution to the stochastic differential equation

dXt = b(t,Xt) + σ(t,Xt)dBt

under the conditions
H1) (Lipschitz)

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D |x− y|
H2) (Growth)

|b(t, x))|+ |σ(t, x)| ≤ C(1 + |x|)
Ito’s Lemma Let a square integrable random variable X0 and Ft-Brownian motion Bt, t ≥ 0
be given and assume they are independent. Under conditions H1) and H2) there exists a unique
almost surely continuous measurable processes Xt that satisfies

Xt = X0 +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs)dBs (7.3)

Proof: (Uniqueness) Suppose Xt, X̂t be two solutions. Then, we have

E(|Xt − X̂t|2) = E(|X0 − X̂0

∫ t

0
(b(s,Xs)− b(s, X̂s) ds+

∫ t

0
(σ(s,Xs)− σ(s, X̂s)dBs|2)

≤ 3E(|(X0 − X̂0|2) + 3(1 + t)D2E(

∫ t

0
|Xs − X̂s|2 ds)
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By Gronwall inequality

E(|Xt − X̂t|2) ≤ 3E(|(X0 − X̂0|2)e3D2t(1+ t
2 .

(Existence) Consider the fixed point iterate

Xk+1
t = Φ(t,Xk

t ) with X0
t = X0

and

Φ(t,Xt) = X0 +

∫ t

0
b(s,Xs) +

∫ t

0
σ(s,Xs)dBs

Then,

E(|Xk+1
t −Xk

t |2 ≤ (1 + t)D2

∫ t

0
E(|Xk

s −Xk−1
s |2) ds

and
E(|X1

t −X0
t |2 ≤ 2C2t(1 + E(|X0|2))

By induction in k we have

E(|Xk
t −Xk−1

t |2) ≤ Aktk

k!
(7.4)

on t ∈ [0, T ]. Thus, {Xk
t } is Cauchy a sequence in L2(Ω,Ft, P ) has a unique limit Xt(ω) =

limk→∞X
k
t (ω) uniformly on [0, T ]. By the martingale inequality

sup
0≤s≤T

P (|Xk+1
t −Xk

t | ≥ 2−k) ≤ P (

∫ T

0
|b(s,Xk+1

s )− b(s,Xk)|2 ≥ 2−2k−2)

+2k+1E(

∫ T

0
|σ(s,Xk+1

s )− σ(s,Xk)|2) ds.

From (7.4) and by Borel-Cantelli lemma Xt(ω) = limk→∞X
k
t (ω) a.s., uniformly on [0, T ]. �

7.1 Martingale representation

Martingale representation Let Ft = σ(Bs, s ≤ t). For every square integrable Ft martingale
there exits a unique f ∈ V = {square integrable adapted processon(0, T ) such that

Mt = E(M0) +

∫ t

0
f(s, ω) dBt(ω).

Proof: Step 1 Let {hk(t)} is the orthonormal basis of L2(0, T ). Define

Yk(t) = e
∫ t
0 hk(s) dBs− 1

2

∫ t
0 |hk(s)|2 ds.

If dXk = kk dBt − |hk|
2

2 dt, then

dYk(t) = Yk(t)(dXk +
1

2
|hk|2 dt) = hk(t)Yk(t) dBt

and

Yk(t) = 1 +

∫ t

0
hk(t)Yk(t) dBt.
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Since
d((YkYj) = dYkYj + YkdYj + hkhjYkYj dt,

E(Yk(t)Yj(t)) = 1 +

∫ t

0
hk(s)hj(s)E(Yk(s)Yj(s)) ds

Thus,

E(Yk(T )Yj(T )) = e
∫ T
0 hk(s)hj(s) ds = 1

and
E(|Yk(T )− 1|2) = e.

since {hk(t)} are an orthonormal basis in L2(0, T ). Hence { 1√
T
,
Yk(t)− 1√

e
, k ≥ 1} are an orthonor-

mal basis in L2(Ω,FT , P ) and for every FT measurable random variable F has

F = α0 +
∑∞

k=1 αk(Yk(t)− 1) = α0 −
∑∞

k=1

∫ T
0 αkhk(s)Yk(s)dBs

= E(F ) +

∫ T

0
f(s, ω) dBs,

(7.5)

where

αk =
1

e
E((Yk(t)− 1)F ), α0 = E(F ).

By the isometry

E(|F |2) = E(|F0|2) + E(

∫ T

0
|f(s, ω)|2 ds).

and the representation (7.5) is unique.
Step 2 By Step 1 for t1 ≤ t2

Mt1 = E(Mt2 |Ft1) = E(M0) + E(

∫ t2

0
f (t2)(s, ω) dBs|Ft1)

= E(M0) +

∫ t1

0
f (t2)(s, ω) dBs = E(M0) +

∫ t1

f (t1)(s, ω) dBs.

Thus,

0 = E(|
∫ t1

0
(f (t1)(s, σ)− f (t2)(s, ω)) dBs|2) = E

∫ t1

0
|f (t1)(s, ω)− f (t2)(s, ω))|2 ds.

and f (t1)(s, ω) = f (t2)(s, ω) = f(s, ω) almost surely.

7.2 Tanaka’s formula

Let

gε(x) =


|x|, |x| ≥ ε

x2

2ε
+
ε

2
|x| ≤ ε.
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By the Ito formula

gε(Bt) = gε(B0) +

∫ t

0
g′(Bs)dBs +

1

2ε
m(s ∈ [0, t] : Bs ∈ (−ε, ε))

Since ∫ t

0
g′(Bs)I{|Bs| ≤ ε} dBs =

∫ t

0

Bs
ε
I{|Bs| ≤ ε}dBs → 0 as ε→ 0,

|Bt| = |B0|+
∫ t

0
sign(Bs)dBs + Lt(ω)

where Lt(ω) = the local time for the Brownian motion is defined by

Lt(ω) = lim
ε→0+

1

2ε
m(s ∈ [0, t] : Bs ∈ (−ε, ε)) in L2(Ω,F , P ).

7.3 Dynkin’s formula

Let Xt = x+Bt in Rn and f = |x|2. Define a stooping time τ by

τ = inf{t ≥ 0 : |Xt| = R}, |x| < R.

By the Dynkin’s formula

Ex(f(Xτ∧k)) = f(x) + Ex(

∫ τ∧k

0

1

2
∆f(Xs) ds) = |x|2 + nEx(τ ∧ k).

Thus, letting k →∞
Ex(τ) = R2 − |x|2.

For n = 2 let f(x) = −log|x| and |x| ≥ R. Since ∆f = 0,

Ex(f(Xτk) = f(x)

for τk = inf{t ≥ 0|Xt| = R or |Xt| = 2kR}. For pk = P x(|Xτk | = R) and qk = P x(|Xτk | = 2kR).

−logRpk − (logR+ k log2)qk = −log|x|

Thus, qk → 0 as k →∞ and P x(τ <∞) = 1. This implies the Brownian motion is recurrent.
For n > 2 let f(x) = |x|2−n. Since

R2−npk + (2kR)2−nqk = |x|2−n,

lim
k→∞

pk = P x(τ <∞) = (
|x|
R

)2−n

and the Brownian motion is transient.
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7.4 Girzanov Transform

In this section we disccus the Grizanov transform, which uses the measure change;

dν

dµ
(ω) = f(ω) ∈ L1(Ω) on (Ω,F

Lemma (Measure Change) Assume

Eν(|X|] =

∫
Ω
|X(ω)|f(ω) dµ = Eµ(fX) <∞.

Then we have
Eν(X|H)Eµ(f |H) = Eµ(X|H).

Proof: The lemma follows from the following identities:∫
H Eν(X|H)f dµ =

∫
H Eν(X|H) dv =

∫
X dν =

∫
H Xf dµ =

∫
H Eµ(fX|H)∫

H Eν(X|H)f dµ = Eµ(Eν(X|H)fIH |H) = Eµ(IHEν(X|H)Eµ(f |H)) =
∫
H Eν(X|H)Eµ(f |H) dµ

Theorem I (Girzanov) Let Yt be an Ito process defined by

dYt = b(t, ω) dt+ dBt

and Mt is an exponential martingale;

Mt = e−
∫ t
0 b(s,ω) ds− 1

2

∫ t
0 |b(s,ω)|2 ds.

Define the measure Q on (Ω,FT ) by

dQ = Mt(ω)dP on Ft

Then, Yt is (Ft, Q)-Brownian motion.
Proof: Since

dMt = −bMt dBt, d(MtYt) = Mt(b dt+ dBt)− YtMt dBt − bMtd dt = Mt(1− Yt) dBt, (7.6)

MtYt is a martingale. Since

d(MtY
2
t ) = dMtY

2
t + 2YtMtdYt +Mtdt− 2bMtYt dt

= (−bMtdBt)Y
2
t + 2(b dt+ dBt) +Mtdt− 2bMt dt = (−bMtY

2
t + 2MtYt) dBt +Mt dt,

(7.7)

E(MtY
2
t |Fs) = MsY

2
s + (t− s)Ms

Hence Yt and Y 2
t − t are (Ft, Q) martingale since

EQ(Yt|Fs) =
E(MtYt|Fs)
E(Mt|Fs)

=
MsYs
Ms

= Ys

and

EQ(Y 2
t − t|Fs) =

E(Mt(Y
2
t − t)|Fs)

E(Mt|Fs)
=
MsY

2
s − sMs

Ms
= Y 2

s − s.
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By the Levy characterization of Brownian motion Yt is a (Ft, Q) Brownian motion.
Remark MT dP = MtdP on Ft, t ≤ T , i.e.,∫

fMT dP = E(MT f) = E(E(MT f |Ft) = E(fE(MT |Ft) = E(fMt) =

∫
fMt dP

for all f ∈ Ft -measurable.
Theorem II (Girzanov) Let Xt, Yt be Ito processes defined by

dXt = α(t, ω) dt+ θ(t, ω) dBt

and
dYt = β(t, ω) dt+ dBt

Assume that there exists a u(t, ω) such that

θ(t, ω)u(t, ω) = β(t, ω)− α(t, ω)

and assume E(e
1
2

∫ T
0 |u(s,ω)|2 ds) <∞ (Novikov condition). Let Mt be an exponential martingale;

Mt = e−
∫ t
0 u(s,ω) ds− 1

2

∫ t
0 |u(s,ω)|2 ds.

Define the measure Q on (Ω,FT ) by

dQ = Mt(ω)dP on Ft

Then, B̂t =
∫ t

0 u(s, ω) ds+Bt is (Ft, Q)-Brownian motion and

dYt = αt dt+ θ(t, ω)dB̂t on (FT , Q)

Proof:
dYt = β(t, ω) dt+ θ(t, ω)(dB̂t − u(t, ω) dt)

= (β(t, ω)− θ(t, ω)u(t, ω)) dt+ θ(t, ω)dB̂t = α(t, ω) dt+ θ(t, ω)dB̂t.

Theorem III (Girzanov) Let Xt, Yt be Ito processes defined by

dYt = b(t, Yt)dt+ σ(t, Yt)dBt

Assume that there exists a u(t, ω) such that

σ(t, Yt)u(t, ω) = b(t, Yt)− a(t, Yt)

and assume E(e
1
2

∫ T
0 |u(s,ω)|2 ds) <∞ (Novikov condition). Let Mt be an exponential martingale;

Mt = e−
∫ t
0 u(s,ω) ds− 1

2

∫ t
0 |u(s,ω)|2 ds.

Define the measure Q on (Ω,FT ) by

dQ = Mt(ω)dP on Ft

Then, B̂t =
∫ t

0 u(s, ω) ds+Bt is (Ft, Q)-Brownian motion and

dYt = a(t, Yt) dt+ σ(t, Yt)dB̂t on (FT , Q).
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Example Let a be bounded continuous and

Yt = x+Bt

with b = 0, σ = I. Let u = −a(Yt). Let

Mt = e
∫ t
0 a(Ys)dBs− 1

2

∫ t
0 |a(Ys)|2 ds

Then, (Yt, B̂t) is a weak solution to

dXt = a(Xt) dt+ dB̂t

and
EP (f(Xt1 , · · · , Xtk)) = EQ(f(Bt1 , · · · , Btk)),

for all bounded continuous function f .

7.5 Excises

Problem 1 Check (7.6)–(7.7).
Problem 2 Consider the SDE

dXt = f(t,Xt) dt+ σ(t)Xt dBt

(1) Define

Ft = e−
∫ t
0 σ(s)dBs+

1
2

∫ t
0 |σ(s)|2 ds.

Show that d(FtXt) = Ftf(t,Xt) dt.
(2) Let Yt(ω) be a solution to

d

dt
Yt(ω) = Ft(ω)f(t, F−1

t (ω)Yt(ω)).

Show that Xt = F−1
t (ω)Yt(ω) defines a solution to the SDE.

(3) If f(t, x) = r(t)x, then

Xt = X0e
∫ t
0 σ(s)dBs+

∫ t
0 (r(s)− 1

2
|σ(s)|2) ds

Derive a solution to
dXt = Xγ

t dt+ σXt dBt.

8 Probabilty Theory

In this section we discuss the basic concept and theory of the probability and stochastic process.
Let Ω be a set and F be a collection of subsets of Ω. If A ∈ F is an event. The probability measure
P assigns 0 ≤ P (A) ≤ 1 for each event A ∈ F , i.e. the probability of event A occurs. We now
introduce the definition of the probability triple (Ω,F , P ):

Definition (1) F is σ-algebra, i.e.,

Ω ∈ F , A ∈ F ⇒ Ac ∈ F

Fn ∈ F ⇒
⋃
n Fn ∈ F
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(2) P is σ-additive; for a sequence of disjoint events {An} in F ,

P (
⋃
n

An) =

∞∑
n=1

P (An)

and for A ∈ F
P (Ω) = 1, P (Ac) = 1− P (A).

Since (
⋃
n Fn)c =

⋂
n F

c
n, the countable intersection⋂

n

Fn ∈ F .

Theorem (Monotone Convergence) Let {Ak} be a sequence of nondecreasing events and A =⋃
k≥1Ak. Then, limn→∞ P (An) = P (A).

Examples (σ-algebra)
F0 = {Ω,∅}, F∗ = all subsets of Ω.

Let A be a subset of Ω and σ-algebra generated by A is

FA = {Ω,∅, A,Ac}

Let A, B be subsets of Ω and σ-algebra generated by A, B is

FA,B = {Ω,∅, A,Ac, B,Bc, A ∩B,A ∪B,Ac ∩Bc, Ac ∪Bc, Ac ∩B,Ac ∪B,A ∩Bc, A ∪Bc}.

A finite set of subsets A1, A2, · · · , An of Ω which are pairwise disjoint and whose union is Ω. it is
called a partition of Ω . It generates the σ-algebra: A = {A =

⋃
j∈J Aj} where J runs over all

subsets of 1, · · · , n. This σ-algebra has 2n elements. Every finite σ-algebra is of this form. The
smallest nonempty elements {A1, · · · , An} of this algebra are called atoms.

Example (Countable measure) Let Ω has a countable decomposition {Dk}, i.e.,

Ω =
∑

Dk, Dj ∩Dj = ∅, i 6= j.

Let F = F∗ and P (Dk) = αk > 0 and
∑

k αk = 1. For the Poisson random variable X

Dk = {X = k}, P (Dk) = e−λ
λk

k!
.

for λ > 0.

Example (Coin Tossing) If the cardinality of Ω is finite, then naturally we let F = F∗ and
P ({ω}), ω ∈ Ω defines a measure on (Ω,F), i.e., P (A) =

∑
ω∈A P (ω) for A ∈ F . For example the

case of coin tossing n-times independently is formulated as

Ω = {ω = (b1, · · · , bn), bi = 0, 1}

and P (ω) = p
∑
aiqn−

∑
ai , where p is the probability of ”Head” appears and q is the probability of

”Tail” appears. the cardinality of Ω is 2n in this case. For the case of an infinite number of coin
tossing Ω is the set of binary sequences;

Ω = {ω = (b1, b2, · · · ), bi = 0, 1}.
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Each number x ∈ [0, 1) has the binary expression

x =

∞∑
k=1

bk
2k

Thus, Ω has the cardinality of the continuum. Suppose p = q = 1
2 and all samples ω ∈ Ω

have the same probability. Since the set [0, 1) is uncountable, P (ω) = 0 for each ω ∈ Ω. The
sets [1

2 , 1) = {”Head” appers at the first toss} and [0, 1
2) = {”Tail” appers at the first toss} should

have the probability 1
2 . This suggests F∗ does not lead very far and P must be assigned to a

collection F of subsets of Ω for uncountable space Ω. For the measure space (Ω,F), F must be
closed with repeat to countable unions and intersections and complements.

Definition For any set C of subsets of Ω, we can define the σ-algebra σ(C) by the smallest σ-
algebra A which contains C. The σ-algebra A is the intersection of all σ-algebras which contain
C. It is again a σ-algebra.

If (E,O) is a topological space, where O is the set of open sets in E, then the σ-algebra B(E)
generated by O is called the Borel σ-algebra of the topological space E. A set B in B(E) is called
a Borel set.

Definition A map f from a measure space (X,A) to an other measure space (Y,B) is called
measurable, if f−1(B) = {x ∈ X : f(x) ∈ B} ∈ A for all B ∈ B.

For example, for f(x) = x2 on (R,B(B)) one has f−1(([1, 4]) = [1, 2] ∪ [−2,−1].

Definition A function X : Ω → R is called a random variable, if it is a measurable map from
(Ω,F) to (R,B(R)). Every random variable X defines a σ-algebra FX = {X−1(B) : B ∈ B(R)}.
which is called the σ-algebra generated by X.

Definition Let X be a random variable. Then we define the induced measure on on (R,B(R) by

µ(B) = P (X−1(B)), B ∈ B(R)

and the distribution function by

F (x) = P (X(ω) ≤ x), x ∈ R.

Then, F satisfies that x ∈ R → F (x) ∈ R+ is nondecreasing, right continuous and the left limit
exists everywhere and F (−∞) = limx→−∞ = 0, F (∞) = limx→∞ = 1. Such a function F is called
a distribution function on R.

Example (Random Variable) Let Ω = R and B(R) be Borel σ-algebra. Note that

(a, b] =
⋂
n

(a, b+
1

n
), [a, b] =

⋂
n

(a− 1

n
, b+

1

n
) ∈ B(R).

Thus, B(R) coincides with the σ-algebra generated by the semi-closed intervals. Let A be the
algebra of finite disjoint sum of semi-closed intervals (ai, bi] and define P0 by

P0(

n∑
k=1

(ak, bk]) =

n∑
k=1

(F (bk)− F (ak))

where F is a distribution function on R. We have the measure P on (R,B(R)) and thus a random
variable X(ω) = ω on (Ω,F) = (R,B(R)). That is, a random variable X is uniquely identified with
its distribution function.
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Caratheodory Theorem Let B = σ(A, the smallest algebra containing an algebra A of subsets
of Ω. Let µ0 is a sigma additive measure of on (Ω,a). Then there exist a unique measure on Ω,B)
which is an extension of µ0, i.e., µ(A) = µ0(A), A ∈ A

We now prove that P0 is countably additive on A. By the theorem it suffices to prove that

P0(An) ↓ 0, An ↓ ∅, An ∈ A.

Without loss of the generality one can assume that An ⊂ [−N,N ]. Since F is the right continuous,
for each An there exists a set Bn ∈ A such that Bn ⊂ An and

P0(An)− P0(Bn) ≤ ε2−n

for all ε > 0. The collection of sets {[−N,N ] \Bn} is an open covering of the compact set [−N,N ]
since ∩Bn = ∅. By the Heine-Borel theorem there exists a finite subcovering;

n0⋃
n=1

[−N,N ] \Bn = [−N,N ].

and thus ∩n0
n=1Bn = 0. Thus,

P0(An0) = P0(An0 \
⋂n0
k=1Bk) + P0(

⋂n0
k=1Bk) = P0(An0 \

⋂n0
k=1Bk)

P0(

n0⋂
k=1

(Ak \Bk)) ≤
n0∑
k=1

P0(Ak \Bk) ≤ ε.

Since ε > 0 is arbitrary P0(An)→ 0 as n→∞.

Problem 1 P (A ∪B) = P (A) + P (B)− P (A ∩B).
Problem 2 Show that ∩αFα is a σ-algebra.
Problem 3 Let X be a random variable {X−1(B) : B ∈ B(R)} is a σ-algebra.

8.1 Expectation

In this section we define the expectation of a random variable X on (Ω,F , P ).
Defintion (simple random variable) A simple random variable X is defined by

X(ω) =

n∑
xi IAk(ω)

where {Ak} is a partition ofΩ, i.e, Ak ∈ F are disjoint and
∑
Ak = Ω. Then expectation of X is

given by

E[X] =
∑

xkP (Ak).

Theorem For every random variable X(ω) ≥ 0 there exists a sequence of simple random variable
{Xn} such that 0 ≤ Xn(ω) ≤ X(ω) and Xn(ω) ↑ X(ω) for all ω ∈ Ω).
Proof: For n ≥ 1, define a sequence of simple random variable by

Xn(ω) =
n2n∑
k=1

k − 1

2n
Ik,n(ω) + nIX(ω)>n
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where Ik,n is the indicator function of the set {ω : k−1
2n < X(ω) ≤ k

2n }. It is easy to verify that
Xn(ω) is monotonically nondecreasing and Xn(ω) ≤ X(ω) and thus Xn(ω)→ X(ω) for all ω ∈ Ω.
�

Definition For a nonnegative random variable X we define the expectation by

E(X) = lim
n→∞

E(Xn)

where E(Xn) is an increasing number sequence.

Note that X = X+ − X− with X+(ω) = max(0, X(ω)), X−(ω) = max(0, X(ω)). So, we can
apply for Theorem and Definition for X+ and X−.

E[X] = E[X+]− E[X−]

If E[X+], E[X−] <∞, X is integrable and

E[|X|] = E[X+] + E[X−].

Corollary Let µX is the induced distribution of the random variable X, i.e.,

µ(x) = P ({X(ω) ≤ x})

Then, for a Borel function f : R→ R

E(f(Xn)) =

n2n∑
f(
k − 1

2n
)(µ(

k

2n
)− µX(

k − 1

2n
)) + f(n)(1− µX(n))→

∫ ∞
0

f(x) dµ(x) = E(f(X))

as n→∞

8.2 Stochastic Process

A stochastic process is a parametric collections of random variables {Xt}t∈T defined on a probability
space (Ω,F , P ) and taking values in the state space S. The space T os either discrete time T =
0, 1, · · · or T = [0,∞). The state space S is a complete merit space. That is, for each t ∈ T

ω ∈ Ω→ Xt(ω) ∈ S is a random variable.

On the other hand, for each ω ∈ Ω
t→ Xt(ω)

defines a sample path of Xt. Thus, Xt(ω) represents the value at time t ∈ T of a sample ω ∈ Ω
and it may be regarded as a function of two variables:

(t, ω) : T × Ω→ X(t, ω) ∈ S.

and we assume that X(t, ω) is jointly measurable in (t, ω).
Let Ω be a subset of the product space ST of function t → X(t, ω) from t → S The σ-algebra

F contains the sigma-algebra B generated by sets of form

{ω : Xt1 ∈ B1, · · · , Xtn ∈ Bn}

for all t1, · · · , tn ∈ T, n ∈ N and Borel setsBk in S. Therefore, we adopt the point of view that a
stochastic process is a probability measure on the measure space (ST ,B)
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Definition (Finite dimensional distribution) The finite dimensional distribution of the stochas-
tic process Xt are the measures defined µt1,··· ,tn on Sn;

µt1,··· ,tn(F1 × · · · × Fn) = P (Xt1 ∈ F1, · · · , Xtn ∈ Fn).

for all tk ∈ T, n ∈ N and Borel sets Fk of S. The family of finite dimensional distributions
determines the statistical properties of the process Xt. Conversely, a given family of {νt1,··· ,tn , tk ∈
T, n ∈ N} of probability measure on Sn with the two natural consistency conditions it follows
from the Kolmogorov’s extension theory we are able to construct a stochastic process;
Theorem (Kolmogorov’s extension theory) For all t1, · · · , tn, let νt1,··· ,tn be the probability
mesures on Sn satisfying

νtπ(1),··· ,tπ(n)(B1 × · · · ×Bn) = νt1,··· ,tn(Bπ−1(1) × · · · ×Bπn(n))

for all permutations π on {1, · · · , n} and

νt1,··· ,tn(B1 × · · · ×Bn) = νt1,··· ,tn,tn+1,···tn+m(B1 × · · · ×Bn × S · · · × S)

there exits a probability space (Ω,F , P ) and a stochastic process Xt on Ω such that

νt1,··· ,tn(B1 × · · · ×Bn) = P (Xt1 ∈ B1, · · · , Xtn ∈ Bn),

for all tk ∈ T, n ∈ N and all Borel sets Bk.
Example (Brownian motion)

A stochastic process Bt, t ≥ 0 is called a Brownian motion if it satisfies the following conditions:
i) For all 0 ≤ t1 < · · · < tn the increments Btn − Btn−1 , · · ·Bt2 − Bt1 are independent random
variables.
ii) If 0 ≤ s < t, the increment Bt −Bs has the normal distribution N(0, t− s).
Based on the conditions we have

νt1,··· ,tn(F1 × · · · × Fn) =

∫
F1×···×Fn

p(t1, x, x1)p(t2 − t1, x1, x2) · · · p(tn − tn−1, xn−1, xn) dx1 · · · dxn

where

p(t, x, y) = (2πt)−
n
2 e−

|x−y|2
t .

8.3 Convergence of Stochastic Process

Borel-Cantelli Lemma If
∑
P (An) <∞ then P (An occurs infinitely manny time) = 0.

Proof: Note that

An occurs infinitely manny time) = lim supAn = ∩∞n ∪∞k≥n Ak.

Thus,

P (An occurs infinitely manny time) = lim
n→∞

P (∪∞k≥nAk ≤ lim
n→∞

∑
k≥n

P (Ak) = 0.

Definition A sequence of random variables {Xn} is uniformly integrable if

sup
n

∫
|Xn|≥c

|Xn| dP → 0 as c→∞

Theorem (Uniform Integrable) If {Xn} is uniformly integrable, then
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(a) E(lim inf Xn) ≤ lim inf E(Xn) ≤ lim supE(Xn) ≤ E(lim supXn).
(b) If in addition Xn → X a.s., then X is integrable and E(|Xn −X|)→ 0 as n→∞.

Lemma Let G be a nonnegative increasing function on R+ such that limt→∞
G(t)
t →∞. If

sup
n

E(G(|Xn|)) <∞

then {Xn} is uniformly integrable.

Theorem (Kolmogorov)

8.4 Conditional Expectation

Definition Let X be a random variable andA be a σ-algebra. The conditional expectation E(X|A)
is a A random variable that satisfies

E(IAE(X|A)) = E(IAX) (8.1)

for all A ∈ A.

Note that Q(A) = E(IAX), A ∈ A for a nonnegative random variable X defines a measure Q
on (Ω,A) and if P (A) = 0 implies Q(A) = 0 (i.e. Q is absolutely continuous with respect to P ). By
the Radon-Nikodym theorem the conditional expectation exists as the Radon-Nikodym derivative
dQ
dP = E(X|A). Condition (8.1) is equivalent to the orthogonality condition;

E(Z (X − E(X|A))) = 0 for all A-measurable random variables Z. (8.2)

Let L2(Ω,F , P ) be a space of square integrable random variables and define the inner product by

(X,Y )L2 = E(XY )

Then, L2(Ω,F , P ) is a Hilbert space. Moreover X̂ = E(X|A) minimizes

E(|X − Z|2) over all A-measurable square integral random variables

In fact,

E(|X − Z|2) = E(|X − X̂|2 + 2(X − X̂)(X̂ − Z) + |Z − X̂|2) = E(|X − X̂|2) + E(|Z − X̂|2).

That is, E(X|A) is the orthogonal projection of X onto the subspace space of A-measurable random
variables of L2(Ω,F , P ). If X, Y are random variables

P (X ∈ B|Y = y) =

∫
B

pX,Y (x, y)

pY (y)
dx

where pX,Y is the joint density function of (X,Y ) and and pY (y) is the marginal density of Y .

Property of Conditional Expectation
(1) E(E(X|H)|A) = E(X|A) for A ⊆ H.
(2) E(X|A) = E(X), if X is independent with A.
(3) E(Z X|A) = Z E(X|A) if Z is A measurable.
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8.5 Characteristic Functions

Definition For X ∈ Rn is random vector the characteristic function of X is defined by

ϕ(ξ) = E(ei(ξ,X)) =

∫
Rn
ei(ξ,x)dF (x), ξ ∈ Rn,

where F is the distribution of Xt.

Theorem The characteristic function t ∈ R→ ϕ(t) satisfies;
(1) |ϕ(t)| ≤ ϕ(0) = 1.
(2) ϕ(t) is uniformly continuous.
(3) ϕ(t) = ϕ(−t).
(4) ϕ(t) is real-valued if and only if F is symmetric.
(5) If E(|X|n) <∞ for some n ≥ 1, then ϕ(n)(t) exists for all r ≤ n,

ϕ(r)(t) =

∫
R

(ix)reitx dF (x), (i)r E(Xr) = ϕ(r)(0),

and

ϕ(t) =

n∑
r=0

(it)r

r!
E(Xr) +

(it)n

n!
εn(t),

where |εn(t)| ≤ 3E(|X|n) and εn(t)→ 0 as t→ 0.
(6) If ϕ(2n)(0) exists and is finite, then E(X2n) <∞.

(7) If E(|X|n) <∞ for all n ≥ 1 and lim sup (E(|X|n))
1
n

n = 1
eR <∞, then

ϕ(t) =

∞∑
n=0

(it)n

n!
E(|X|n) for all |t| < R.
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